SOME COUNTEREXAMPLES AND PROBLEMS ON LINEAR RECURRENCE RELATIONS

DAVID SINGMASTER
American University of Beirut, Beirut, Lebanon
In [1, pp. 48-50], several false assertions are made concerning linear recurrence relations $(\bmod m)$. I will give counterexamples to these and will establish one result on a stronger hypothesis. Theorems 3.6 and 3.7 of [1] are false as stated, and it is an open question what additional hypotheses are required for their validity.

Let
(1)

$$
u_{n+1}=\sum_{i=0}^{j} a_{i} u_{n-i}+b
$$

For a given modulus m, let x_{n} be the least non-negative residue of u_{n} $(\bmod m)$. In $[1]$, it is assumed that $a_{i} \geq 0, b \geq 0$, and

$$
\left(a_{0}, a_{1}, \cdots, a_{j}, m\right)=\left(x_{0}, x_{1}, \cdots, x_{j}, b, m\right)=1,
$$

although these hypotheses do not appear to be essential. Of course, all quantities are integers. Let $H(m)$ be the period of $x_{n}(\bmod m)$. The following false assertions are made in [1; (3.12), 3.6, 3.7 are his numbers]:
x_{n} is a purely periodic sequence, i. e.,

$$
\begin{equation*}
\text { 田 } \mathrm{H}: \forall \mathrm{n}, \mathrm{k} \geq 0 \quad \mathrm{x}_{\mathrm{n}+\mathrm{kH}} \equiv \mathrm{x}_{\mathrm{n}}(\bmod \mathrm{~m}) \text {. } \tag{3.12}
\end{equation*}
$$

Theorem $3.6 H\left(p^{e+1}\right)=H\left(p^{e}\right)$ or $p \cdot H\left(p^{e}\right)$.
In the supposed proof, $c_{i k}$ is defined by
$u_{i+k H}=x_{i}+c_{i k} p^{e}$
for $m=p^{e}, H=H\left(p^{e}\right)$. Then $c_{i k} \geq 0$. It is asserted that

Apr. 1970
(2)

$$
\mathrm{p} \nmid \mathrm{c}_{\mathrm{i} 1} \Rightarrow \mathrm{c}_{\mathrm{ik}} \equiv \mathrm{kc} \mathrm{c}_{\mathrm{i} 1}(\bmod \mathrm{p})
$$

and the proof is completely dependent on this:
Theorem 3.7. If

$$
H(p)=H\left(p^{2}\right)=\cdots=H\left(p^{e}\right) \neq H\left(p^{e+1}\right)
$$

then $H\left(p^{e+f}\right)=p^{f} H\left(p^{e}\right)$.
Example 1. $u_{n+1}=u_{n}+2 u_{n-1}, u_{0}=u_{1}=1$. All hypotheses are satisfied for $m=2{ }^{e}$. The sequence u_{n} is given below, together with the x_{n} sequences $(\bmod 2,4,8$, and 16$)$.

n	0	1	2	3	4	5	6	7	8	9	10
$\mathrm{u}_{\mathrm{n}}(\bmod 2)$	1	1	3	5	11	21	43	85	171	341	683
$\mathrm{x}_{\mathrm{n}}(\operatorname{lod} 4)$	1	1	3	1	3	1	3	1	3	1	3
$\mathrm{x}_{\mathrm{n}}(\bmod 4$											
$\mathrm{x}_{\mathrm{n}}(\bmod 8)$	1	1	3	5	3	5	3	5	3	5	3
$\mathrm{x}_{\mathrm{n}}(\bmod 16)$	1	1	3	5	11	5	11	5	11	5	11

We have

$$
u_{n+1}=\left(2^{n+1}+(-1)^{n}\right) / 3
$$

For $e=1, x_{n}$ is purely periodic with period $H(2)=1$. For $e>1$, we have

$$
u_{0}=u_{1}<u_{2}<\cdots<u_{e}<2^{e}
$$

and

$$
u_{e-1} \equiv u_{e-1+2 k}\left(\bmod 2^{e}\right)
$$

and

$$
u_{e} \equiv u_{e+2 k}\left(\bmod 2^{e}\right)
$$

Clearly $H\left(p^{e}\right)=2$ for $e>1$, but x_{n} is not purely periodic. Further, for $(\bmod 4)$, we have $c_{12}=5, c_{11}=1,2 \nmid c_{11}$ but $c_{12} \not \equiv 2 \cdot c_{11}(\bmod 2)$.
(Of course, $x_{n}(\bmod 4)$ is not purely periodic as assumed in the proof of Theorem 3.6, but we can drop the first term by shifting indices.) Equation (2) does not even hold for plc $_{i 1}$ since for $x_{n}(\bmod 2)$, we have $c_{02}=1, c_{01}=0$ but $c_{02} \neq 2 \cdot c_{01}(\bmod 2)$. Finally, we have $H(2) \neq H(4)$, but $H(8) \neq 4 \cdot H(2)$. So we have shown that equations (3.12) and (2) and Theorem 3.7 are false as stated.

The proper assertion for (3.12) is that x_{n} is (eventually) periodic, i.en,
(3)

$$
\mathrm{Hn}_{0}, \quad \mathrm{HH}: \forall \mathrm{n} \geq \mathrm{n}_{0}, \quad \forall \mathrm{k} \geq 0 \quad \mathrm{x}_{\mathrm{n}+\mathrm{kH}} \equiv \mathrm{x}_{\mathrm{n}}(\bmod \mathrm{~m}) .
$$

However, we can obtain pure periodicity under a different assumption.
Theorem. x_{n} is purely periodic $(\bmod m)$ if $\left(a_{j}, m\right)=1$.
Proof. Let n_{0} be the least integer $\geqslant 0$ such that (3) holds. From (1) we have

$$
a_{j} x_{n-j} \equiv x_{n+1}-\sum_{i=0}^{j-1} a_{i} x_{n-i} b(\bmod m)
$$

Since $\left(a_{j}, m\right)=1$, there is an a_{j}^{-1} such that $a_{j} a_{j}^{-1} \equiv 1(\bmod m)$, so we have

- (4)

$$
x_{n-j} \equiv a_{j}^{-1}\left[x_{n+1}-\sum_{i=0}^{j-1} a_{i} x_{n-i}-b\right](\bmod m)
$$

That is, we can reverse the recurrence relation to get terms of smaller index from terms of larger index. If $n_{0}>0$, set $n=n_{0}+j-1$ and $n=n_{0}+\mathrm{kH}+$ j - 1 in (4) to get

$$
\begin{equation*}
x_{n_{0-1}} \equiv a_{j}^{-1}\left[x_{n_{0}+j}-\left(\sum_{i=0}^{j-1} a_{i} x_{n_{0}+j-1-i}\right)-b\right](\bmod m) \tag{5}
\end{equation*}
$$

(6) $x_{n_{0}-1+k H} \equiv a_{j}^{-1}\left[x_{n_{0}+j+k H}-\left(\sum_{i=0}^{j-1} a_{i} x_{n_{0}+j-1-i+k H}\right)-b\right](\bmod m)$.

Now (3) shows that the right-hand sides of (5) and (6) are congruent (mod m), so $\mathrm{x}_{\mathrm{n}_{0}-1} \equiv \mathrm{x}_{\mathrm{n}_{0}-1+\mathrm{kH}}(\bmod \mathrm{m})$. Hence n_{0} is not the least integer such that (3) holds, hence $n_{0}=0$, that is x_{n} is purely periodic ($\bmod m$).

In view of this result, one might ask if Theorems 3.6 and 3.7 and Eq. (2) might be val id if $\left(a_{j}, m\right)=1$.

Example 2.

$$
u_{n+1}=u_{n-2} \cdot u_{0}=u_{1}=1, \quad u_{2}=3
$$

Again, all hypotheses are satisfied for $m=2^{e}$ and $a_{j}=1$, so $\left(a_{j}, m\right)=1$. The resulting sequence is $x_{n} \equiv 1(\bmod 2)$ and $x_{n}=u_{n}\left(\bmod 2^{e}\right)$ e >1. u_{n} is given by:

n	0	1	2	3	4	5	6	7	8
u_{n}	1	1	3	1	1	3	1	1	3

Clearly $\mathrm{H}(2)=1, \mathrm{H}\left(2^{\mathrm{e}}\right)=3$ for $\mathrm{e}>1$, but $\mathrm{H}\left(2^{2}\right) \neq 2 \cdot \mathrm{H}(2)$ so that Theorems 3.6 and 3.7 both fail. For $p^{e}=2, c_{02}=1 \not \equiv 2 \cdot c_{01}=0(\bmod 2)$ and $c_{13}=0 \not \equiv 3 \cdot c_{11}=3(\bmod 2)$, so (3.12) fails here also.

Further, it is clear that this example can be modified to work for any modulus p^{e}.

Finally, we remark that we can construct a less artificial example with similar properties from

$$
u_{n+1}=u_{n}+u_{n-1}+1_{1} \quad u_{0}=u_{1}=1
$$

n	0	1	2	3	4	5	6	7	8	9	10
$\mathrm{u}_{\mathrm{n}}(\operatorname{lod} 2)$	1	1	1	1	1	1	1	1	1	1	1
$\mathrm{x}_{\mathrm{n}}(\bmod 4)$	1	1	3	1	1	3	1	1	3	1	1
$\mathrm{x}_{\mathrm{n}}(\bmod 4)$											
$\mathrm{x}_{\mathrm{n}}(\bmod 8)$	1	1	3	5	1	7	1	1	3	5	1
[Continued on page 279.]											

