SOME COUNTEREXAMPLES AND PROBLEMS ON LINEAR RECURRENCE RELATIONS

DAVID SINGMASTER American University of Beirut, Beirut, Lebanon

In [1, pp. 48-50], several false assertions are made concerning linear recurrence relations (mod m). I will give counterexamples to these and will establish one result on a stronger hypothesis. Theorems 3.6 and 3.7 of [1] are false as stated, and it is an open question what additional hypotheses are required for their validity.

Let

(1)
$$u_{n+1} = \sum_{i=0}^{J} a_i u_{n-i} + b$$
.

For a given modulus m, let x_n be the least non-negative residue of u_n (mod m). In [1], it is assumed that $a_i \ge 0$, $b \ge 0$, and

$$(a_0, a_1, \cdots, a_j, m) = (x_0, x_1, \cdots, x_j, b, m) = 1$$
,

although these hypotheses do not appear to be essential. Of course, all quantities are integers. Let H(m) be the period of $x_n \pmod{m}$. The following false assertions are made in [1; (3.12), 3.6, 3.7 are his numbers]:

 x_n is a purely periodic sequence, i.e.,

(3.12)

$$\exists H: \forall n, k \geq 0$$
 $x_{n+kH} \equiv x_n \pmod{m}$.

<u>Theorem 3.6</u> $H(p^{e+1}) = H(p^e)$ or $p_{e}H(p^e)$. In the supposed proof, c_{ik} is defined by

$$u_{i+kH} = x_i + c_{ik}p^e$$

for $m = p^e$, $H = H(p^e)$. Then $c_{ik} \ge 0$. It is asserted that

(2)
$$p \not\mid c_{i1} \rightarrow c_{ik} \equiv k c_{i1} \pmod{p}$$

and the proof is completely dependent on this:

Theorem 3.7. If

$$H(p) = H(p^2) = \cdots = H(p^e) \neq H(p^{e+1})$$

then $H(p^{e+f}) = p^{f}H(p^{e})$.

Example 1. $u_{n+1} = u_n + 2 u_{n-1}$, $u_0 = u_1 = 1$. All hypotheses are satisfied for $m = 2^e$. The sequence u_n is given below, together with the x_n sequences (mod 2, 4, 8, and 16).

n	0	1	2	3	4	5	6	7	8	9	10
u _n	1	1	3	5	11	21	43	85	171	341	683
$x_n \pmod{2}$	1	1	1	1	1	1	1	1	1	1	1
$x_n \pmod{4}$	1	1	3	1	3	1	3	1	3	1	3
$x_n^n \pmod{8}$	1	1	3	5	3	5	3	5	3	5	3
$x_n \pmod{16}$	1	1	3	5	11	5	11	5	11	5	11

We have

$$u_{n+1} = (2^{n+1} + (-1)^n)/3$$

For e = 1, x_n is purely periodic with period H(2) = 1. For e > 1, we have

 $u_0 = u_1 < u_2 < \cdots < u_e < 2^e$

and

$$u_{e-1} \equiv u_{e-1+2k} \pmod{2^e}$$
 ,

and

$$u_e \equiv u_{e+2k} \pmod{2^e}$$
.

Clearly $H(p^e) = 2$ for e > 1, but x_n is not purely periodic. Further, for (mod 4), we have $c_{12} = 5$, $c_{11} = 1$, $2 \not| c_{11}$ but $c_{12} \neq 2 \cdot c_{11} \pmod{2}$.

265

(Of course, $x_n \pmod{4}$ is not purely periodic as assumed in the proof of Theorem 3.6, but we can drop the first term by shifting indices.) Equation (2) does not even hold for plc_{11} since for $x_n \pmod{2}$, we have $c_{02} = 1$, $c_{01} = 0$ but $c_{02} \neq 2 \cdot c_{01} \pmod{2}$. Finally, we have $H(2) \neq H(4)$, but $H(8) \neq 4 \cdot H(2)$. So we have shown that equations (3.12) and (2) and Theorem 3.7 are false as stated.

The proper assertion for (3.12) is that x_n is (eventually) periodic, i.e.,

$$(3) \qquad \exists n_0, \exists H: \forall n \geq n_0, \forall k \geq 0 \qquad x_{n+kH} \equiv x_n \pmod{m}.$$

However, we can obtain pure periodicity under a different assumption.

<u>Theorem</u>. x_n is purely periodic (mod m) if $(a_i, m) = 1$.

<u>Proof.</u> Let n_0 be the least integer ≥ 0 such that (3) holds. From (1) we have

$$a_{j}x_{n-j} \equiv x_{n+1} - \sum_{i=0}^{j-1} a_{i}x_{n-i} b \pmod{m}$$

Since $(a_j, m) = 1$, there is an a_j^{-1} such that $a_j a_j^{-1} \equiv 1 \pmod{m}$, so we have

(4)
$$x_{n-j} \equiv a_j^{-1} \left[x_{n+1} - \sum_{i=0}^{j-1} a_i x_{n-i} - b \right] \pmod{m}$$

That is, we can reverse the recurrence relation to get terms of smaller index from terms of larger index. If $n_0 > 0$, set $n = n_0 + j - 1$ and $n = n_0 + kH + j - 1$ in (4) to get

(5)
$$x_{n_0-1} \equiv a_j^{-1} \left[x_{n_0+j} - \left(\sum_{i=0}^{j-1} a_i x_{n_0+j-1-i} \right) - b \right] \pmod{m}$$
.

266

(6)
$$x_{n_0-1+kH} \equiv a_j^{-1} \left[x_{n_0+j+kH} - \left(\sum_{i=0}^{j-1} a_i x_{n_0+j-1-i+kH} \right) - b \right] \pmod{m}$$
.

Now (3) shows that the right-hand sides of (5) and (6) are congruent (mod m), so $x_{n_0-1} \equiv x_{n_0-1+kH} \pmod{m}$. Hence n_0 is not the least integer such that (3) holds, hence $n_0 = 0$, that is x_n is purely periodic (mod m).

In view of this result, one might ask if Theorems 3.6 and 3.7 and Eq. (2) might be valid if $(a_i,m) = 1$.

Example 2.

$$u_{n+1} = u_{n-2} \cdot u_0 = u_1 = 1, \quad u_2 = 3.$$

Again, all hypotheses are satisfied for $m = 2^{e}$ and $a_{j} = 1$, so $(a_{j}, m) = 1$. The resulting sequence is $x_{n} \equiv 1 \pmod{2}$ and $x_{n} = u_{n} \pmod{2^{e}}$ e > 1. u_{n} is given by:

> n 0 1 2 3 4 5 6 7 8 u_n 1 1 3 1 1 3 1 1 3

Clearly H(2) = 1, $H(2^{e}) = 3$ for $e \ge 1$, but $H(2^{2}) \ne 2 \cdot H(2)$ so that Theorems 3.6 and 3.7 both fail. For $p^{e} = 2$, $c_{02} = 1 \ne 2 \cdot c_{01} = 0 \pmod{2}$ and $c_{13} = 0 \ne 3 \cdot c_{11} = 3 \pmod{2}$, so (3.12) fails here also.

Further, it is clear that this example can be modified to work for any modulus p^{e} .

Finally, we remark that we can construct a less artificial example with similar properties from

$$u_{n+1} = u_n + u_{n-1} + 1$$
, $u_0 = u_1 = 1$.

n	0	1	2	3	4	5	6	7	8	9	10
u _n	1	1	3	5	9	15	25	41	67	109	117
\mathbf{x}_{n}^{n} (mod 2)	1	1	1	1	1	1	1	1	1	1	1
11	1	1	3	1	1	3	1	1	3	1	1
$x_n^n \pmod{8}$	1	1	3	5	1	7	1	1	3	5	1
[Continued on											

1970]