A SIMPLE RECURRENCE RELATION IN FINITE ABELIAN GROUPS

H. P. YAP

University of Singapore, Singapore 10

A finite abelian group G is said to have a simple recurrence relation of length n if there exist distinct nonzero elements $a_{1}, a_{2}, \cdots, a_{n}$ of G such that $a_{1}+a_{2}=a_{3}, a_{2}+a_{3}=a_{4}, \cdots, a_{n-2}+a_{n-1}=a_{n}, a_{n-1}+a_{n}=a_{1}$ and $\mathrm{a}_{\mathrm{n}}+\mathrm{a}_{1}=\mathrm{a}_{2}$. It is proved that if $\mathrm{n}=6 \mathrm{~m}$ or $\mathrm{n}=2^{\alpha} \beta^{\beta} \beta_{\mathrm{m}} \Leftarrow 3$), where $(6, \mathrm{~m})$ $=1, \alpha=0,2$, or 3 and $\beta=0,1$, or 2 , then there exists a finite abelian group which has a simple recurrence relation of length n.

Let G be a finite abelian group written additively and $a_{1}, a_{2}, \cdots, a_{n}$ be distinct nonzero elements of G. If

$$
\begin{gathered}
a_{1}+a_{2}=a_{3}, a_{2}+a_{3}=a_{4}, \cdots, a_{n-2}+a_{n-1}=a_{n}, \\
a_{n-1}+a_{n}=a_{1} \text { and } a_{n}+a_{1}=a_{2},
\end{gathered}
$$

then we say that the ordered set

$$
A=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}
$$

has a simple recurrence relation (SRR). If G has an ordered subset A such that the cardinal of A is $n(\gtrless 3)$ and A has a $S R R$, then we say that G has a SRR of length n. We use the notation $\ell(G)=n$ to mean that G has a SRR of length n .

Suppose

$$
A=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}
$$

has a SRR; then we have

$$
\begin{aligned}
& a_{3}=a_{1}+a_{2}, \quad a_{4}=a_{1}+2 a_{2}, \quad a_{5}=2 a_{1}+3 a_{2}, \cdots \\
& \text { Let } \\
& U_{0}=0, \quad U_{1}=1, \quad U_{2}=1, \quad U_{3}=2, \quad U_{4}=3, \quad U_{5}=5, \cdots, U_{i+2}=U_{i}+U_{i+1}, \cdots,
\end{aligned}
$$

be a Fibonacci sequence ($[1]$, p. 148). Then
(1)

$$
\mathrm{U}_{\mathrm{i}}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{\mathrm{i}}-\left(\frac{1-\sqrt{5}}{2}\right)^{\mathrm{i}}\right], \quad \mathrm{i} \geq 0
$$

Thus
(2)

$$
a_{2+i}=U_{i} a_{1}+U_{i+1} a_{2}, \quad i \geq 0
$$

From $a_{n-1}+a_{n}=a_{1}$ and $a_{n}+a_{1}=a_{2}$, we have
(3)

$$
\left(U_{n-1}-1\right) a_{1}+U_{n} a_{2}=0
$$

and
(4)

$$
\left(\mathrm{U}_{\mathrm{n}-2}+1\right) \mathrm{a}_{1}+\left(\mathrm{u}_{\mathrm{n}-1}-1\right) \mathrm{a}_{2}=0
$$

Let

$$
\begin{gathered}
\mathrm{h}(\mathrm{n})=\left(\mathrm{U}_{\mathrm{n}-2}+1\right) \mathrm{U}_{\mathrm{n}}-\left(\mathrm{U}_{\mathrm{n}-1}-1\right)^{2}, \mathrm{n} \geq 2, \\
\left.\mathrm{~d}=\left(\mathrm{U}_{\mathrm{n}-1}-1\right), \mathrm{U}_{\mathrm{n}}\right)
\end{gathered}
$$

the g.c.d. of U_{n-1} and U_{n}, and

$$
\mathrm{f}(\mathrm{n})=\frac{1}{\mathrm{~d}} \mathrm{~h}(\mathrm{n})
$$

Using (1), we can verify
(5)

$$
\mathrm{U}_{\mathrm{j}} \mathrm{U}_{\mathrm{n}}-\mathrm{U}_{\mathrm{n}+1} \mathrm{U}_{\mathrm{n}-1}=(-1)^{\mathrm{j}+1} \mathrm{U}_{\mathrm{n}-\mathrm{j}-1}, \quad \mathrm{j}<\mathrm{n}
$$

Now

$$
\begin{aligned}
\mathrm{h}(\mathrm{n}) & =\left(\mathrm{U}_{\mathrm{n}-2}+1\right)\left(\mathrm{U}_{\mathrm{n}-2}+U_{n-1}\right)-\left(U_{n-1}-1\right)^{2} \\
& =\mathrm{U}_{n-2}^{2}-U_{n-1}^{2}+U_{n-2} U_{n-1}+U_{n-2}+3 U_{n-1}-1 \\
& =\left(U_{n-2}+U_{n-1}\right)\left(U_{n-2}-U_{n-1}\right)+U_{n-2} U_{n-1}+U_{n-1}+U_{n+1}-1 \\
& =-U_{n-3} U_{n}+U_{n-2} U_{n-1}+U_{n-1}+U_{n+1}-1 \\
& =(-1)^{n-1} U_{2}+U_{n-1}+U_{n+1}-1 \quad \text { (by (5)) }
\end{aligned}
$$

Define

$$
\delta_{\mathrm{n}}= \begin{cases}1 & \text { if } \mathrm{n} \text { is even } \\ 0 & \text { if } \mathrm{n} \text { is odd }\end{cases}
$$

Then we have
(6)

$$
\mathrm{h}(\mathrm{n})=\mathrm{U}_{\mathrm{n}-1}+\mathrm{U}_{\mathrm{n}+1}-2 \delta_{\mathrm{n}}
$$

Eliminate a_{2} from (3) and (4), and we have $f(n) a_{1}=0$ and thus by permutation, we have

$$
\begin{equation*}
\mathrm{f}(\mathrm{n}) \mathrm{a}_{\mathrm{i}}=0 \quad \text { for every } \mathrm{i}=1,2, \cdots, \mathrm{n} . \tag{7}
\end{equation*}
$$

Before we proceed further, we list some examples below. We use C_{m} to denote the cyclic group of order m and $C_{m} \times C_{n}$ as the cartesian product of C_{m} and C_{n}.
(E1) $\mathrm{A}=\{(0,1),(1,0),(1,1)\}$ has a SRR in $\mathrm{C}_{2} \times \mathrm{C}_{2}$;
(E2) $A=\{1,3,4,2\}$ has a SRR in C_{5};
(E3) $\mathrm{A}=\{1,4,5,9,3\}$ has a SRR in C_{11};
(E4) $A=\{(1,0),(1,1),(0,1),(1,2),(1,3),(0,1)\}$ has a SRR in $\mathrm{C}_{2} \times \mathrm{C}_{4}$;
(E5) $\mathrm{A}=\{1,-5,-4,-9,-13,7,-6\}$ has a SRR in C_{29};
(E6) $A=\{(1,2,1),(1,1,3),(2,0,4),(0,1,2),(2,1,1),(2,2,3),(1,0,4)$, $(0,2,2)\}$ has a SRR in $\mathrm{C}_{3} \times \mathrm{C}_{3} \times \mathrm{C}_{5}$;
(E7) $A=\{1,5,6,11,17,9,7,16,4\}$ has a SRR in C_{19};
(E8) $\mathrm{A}=\{1,8,9,6,4,10,3,2,5,7\}$ has a SRR in C_{11}.

We write $\ell(G) \neq \mathrm{n}$ if G does not contain any subset A whose cardinal is n, such that A has a SRR. We note that
(i) because of (7), $\ell\left(\mathrm{C}_{4}\right) \neq 3, \quad \ell\left(\mathrm{C}_{8}\right) \neq 6$;
(ii) since $(7, f(i))=1$ for $i=3,4,5,6$ and $(13, f(i))=1$ for $i=3$, $4, \cdots, 12$, therefore both C_{7} and C_{13} have no SRR of any length;
(iii) although $\mathrm{f}(8)=15, \quad \ell\left(\mathrm{C}_{15}\right) \neq 8$; if $\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \cdots, \mathrm{a}_{8}\right\}$ has a SRR in C_{15}, then from (4), we have $3 a_{2} \equiv 9 a_{1}(\bmod 15)$ and thus $a_{2} \equiv$ $-2 a_{1}, 3 a_{1}$, or $8 a_{1}(\bmod 15)$.
Case 1: If $a_{2}=-2 a_{1}$, then $a_{3}=-a_{1}, \cdots, a_{8}=-3 a_{1}=a_{4}$, which is impossible.
Case 2: If $a_{2}=3 a_{1}$, then $a_{3}=4 a_{1}, \cdots, a_{6}=3 a_{1}=a_{2}$, which is impossible.
Case 3: If $a_{2}=8 a_{1}$, then $a_{3}=9 a_{1}, \cdots, a_{7}=9 a_{1}=a_{3}$, which is impossible.
Now we prove
Lemma 1: If

$$
\left(\mathrm{U}_{\mathrm{n}}, \mathrm{f}(\mathrm{n})\right)=1, \mathrm{n} \neq 2(2 \mathrm{~m}+1)
$$

then $\ell\left(\mathrm{C}_{\mathrm{f}}(\mathrm{n})\right)=\mathrm{n}$.
Proof: Since $\left(U_{n}, f(n)\right)=1$, therefore

$$
\mathrm{d}=\left(\mathrm{U}_{\mathrm{n}-1}-1, \mathrm{U}_{\mathrm{n}}\right)=1
$$

and thus

$$
\begin{equation*}
\mathrm{f}(\mathrm{n})=\mathrm{h}(\mathrm{n})=\mathrm{U}_{\mathrm{n}-1}+\mathrm{U}_{\mathrm{n}+1}-2 \delta_{\mathrm{n}} \tag{8}
\end{equation*}
$$

Also, there exist r and t such that

$$
\begin{equation*}
r U_{n}+t f(n)=1 \tag{9}
\end{equation*}
$$

From (3), we have

$$
r\left(U_{n-1}-1\right) a_{1}+r U_{n} a_{2}=0
$$

Substitute $r U_{n}=1-\operatorname{tf}(n)$ into the above equation and make use of the result of (7); we have

$$
\begin{equation*}
a_{2}=r\left(1-U_{n-1}\right) a_{1} \tag{10}
\end{equation*}
$$

Thus

$$
a_{3}=a_{1}+a_{2}=\left[r\left(1-U_{n-1}\right)+1\right] a_{1}
$$

and in general,
(11)

$$
a_{2+i}=\left[r U_{i+1}\left(1-U_{n-1}\right)+U_{i}\right] a_{1}, \quad 0 \leq i \leq n-2
$$

Now we prove that $A=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$, where a_{1} is chosen such that $\left(a_{1}, f(n)\right)=1$ and $a_{2+i}, 0 \leq i \leq n-2$ is given by (11), has a SRR.

We need to verify
(I) $a_{1}, a_{2}, \cdots, a_{n}$ considered as elements in $\mathrm{C}_{\mathrm{f}(\mathrm{n})}$, are distinct and nonzero;
(II) $a_{1}+a_{2}=a_{3}, \quad a_{2}+a_{3}=a_{4}, \cdots, a_{n-2}+a_{n-1}=a_{n}, \quad a_{n-1}+a_{n}=a_{1}$, and $a_{n}+a_{1}=a_{2}$

First we prove (II):
For this part, we need only to verify that $a_{n-1}+a_{n}=a_{1}$ and $a_{n}+a_{1}=$ a_{2}. In fact,

$$
\begin{aligned}
a_{n-1}+a_{n}=\left[r U_{n}\left(1-U_{n-1}\right)+U_{n-1}\right] a_{1} & =\left[\left(1-U_{n-1}\right)+U_{n-1}\right] a_{1} \quad(b y \quad(9)) \\
& =a_{1}
\end{aligned}
$$

$$
\begin{aligned}
a_{n}+a_{1}=\left[r U_{n-1}\left(1-U_{n-1}\right)+\right. & \left.U_{n-2}+1\right] a_{1} \\
& =U_{n-1} a_{2}+\left(U_{n-2}+1\right) a_{1}
\end{aligned}
$$

Since

$$
f(n)=\left(U_{n-2}+1\right) U_{n}-\left(U_{n-1}-1\right)^{2}
$$

therefore,

$$
r U_{n}\left(U_{n-2}+1\right) a_{1}+r\left(1-U_{n-1}\right)\left(U_{n-1}-1\right) a_{1}=0
$$

from which it follows that

$$
\left(\mathrm{U}_{\mathrm{n}-2}+1\right) \mathrm{a}_{1}+\left(\mathrm{U}_{\mathrm{n}-1}-1\right) \mathrm{a}_{2}=0
$$

Hence $a_{n}+a_{1}=a_{2}$.
To prove (I), we shall show that
(12)

$$
\begin{gathered}
r U_{i+1}\left(1-U_{n-1}\right)+U_{i} \neq r U_{j+1}\left(1-U_{n-1}\right)+U_{j}, \quad 0 \leq i<j \leq n-2 \\
r U_{i+1}\left(1-U_{n-1}\right)+U_{i} \neq 1, \quad 0 \leq i \leq n-2 ; \\
r U_{i+1}\left(1-U_{n-1}\right)+U_{i} \neq 0, \quad 0 \leq i \leq n-2
\end{gathered}
$$

and
(14)

Suppose for some i, j such that $0 \leq i<j \leq n-2$,

$$
r U_{i+1}\left(1-U_{n-1}\right)+U_{i}=r U_{j+1}\left(1-U_{n-1}\right)+U_{j}
$$

then

$$
r\left(U_{j+1}-U_{i+1}\right)\left(1-U_{n-1}\right)+\left(U_{j}-U_{i}\right)=0
$$

and thus

$$
r U_{n}\left(U_{j+1}-U_{i+1}\right)\left(1-U_{n-1}\right)+U_{n}\left(U_{j}-U_{i}\right)=0,
$$

from which it follows that

$$
\left(U_{j+1}-U_{i+1}\right)\left(1-U_{n-1}\right)+U_{n}\left(U_{j}-U_{i}\right)=0
$$

i.e.,

$$
\left(U_{j} U_{n}-U_{j+1} U_{n-1}\right)-\left(U_{i} U_{n}-U_{i+1} U_{n-1}\right)+U_{j+1}-U_{i+1}=0
$$

Applying (5), we have
(15)

$$
\begin{array}{r}
g(\mathrm{i}, \mathrm{j}) \equiv(-1)^{j+1} \mathrm{U}_{\mathrm{n}-\mathrm{j}-1}+(-1)^{\mathrm{i}} \mathrm{U}_{\mathrm{n}-\mathrm{i}-1}+\mathrm{U}_{\mathrm{j}+1}-\mathrm{U}_{\mathrm{i}+1}=0 \\
0 \leq \mathrm{i}<\mathrm{j} \leq \mathrm{n}-2
\end{array}
$$

We can verify that

$$
-f(n) \leq g(i, j)(\neq 0) \leq f(n)
$$

Hence (15) cannot be true.
Similarly, if

$$
r U_{i+1}\left(1-U_{n-1}\right)+U_{i}=1, \quad 0 \leq i \leq n-2
$$

then

$$
r U_{n} U_{i+1}\left(1-U_{n-1}\right)+U_{n}\left(U_{i}-1\right)=0
$$

which implies that

$$
U_{i+1}\left(1-U_{n-1}\right)+U_{n}\left(U_{i}-1\right)=0
$$

i. e.,

$$
\left(U_{i} U_{n}-U_{i+1} U_{n-1}\right)+U_{i+1}-U_{n}=0
$$

or

$$
\mathrm{k}(\mathrm{i})=(-1)^{\mathrm{i}+1} \mathrm{U}_{\mathrm{n}-\mathrm{i}-1}+\mathrm{U}_{\mathrm{i}+1}-\mathrm{U}_{\mathrm{n}}=0, \quad 0 \leq \mathrm{i} \leq \mathrm{n}-2
$$

We can also verify that

$$
-\mathrm{f}(\mathrm{n})<\mathrm{k}(\mathrm{i})(\neq 0)<\mathrm{f}(\mathrm{n}) .
$$

Hence (16) cannot be true.
Finally, if

$$
r U_{i+1}\left(1-U_{n-1}\right)+U_{i}=0, \quad 0 \leq i \leq n-2
$$

then
(17)

$$
\mathrm{w}(\mathrm{i}) \equiv(-1)^{\mathrm{i}+1} \mathrm{U}_{\mathrm{n}-\mathrm{i}-1}+\mathrm{U}_{\mathrm{i}+1}=0, \quad 0 \leq \mathrm{i} \leq \mathrm{n}-2
$$

But for $n \neq 2(2 \mathrm{~m}+1), \mathrm{w}(\mathrm{i}) \neq 0$, and $-\mathrm{f}(\mathrm{n})<\mathrm{w}(\mathrm{i})<\mathrm{f}(\mathrm{n})$. Hence (17) cannot be true.

The proof of Lemma 1 is complete.
Lemma 2. Let G_{1}, G_{2} be two finite abelian groups. If

$$
\ell\left(\mathrm{G}_{1}\right)=\mathrm{m}, \quad \ell\left(\mathrm{G}_{2}\right)=\mathrm{n}, \quad \mathrm{~m}<\mathrm{n}, \quad(\mathrm{~m}, \mathrm{n})=\mathrm{d},
$$

then

$$
\ell\left(G_{1} \times G_{2}\right)=\frac{1}{d} m n
$$

Proof: Let

$$
A=\left\{a_{1}, a_{2}, \cdots, a_{m}\right\}
$$

be a subset of G_{1} such that A has a SRR and

$$
B=\left\{b_{1}, b_{2}, \cdots, b_{n}\right\}
$$

be a subset of G_{2} such that B has a SRR. Then we can prove that

$$
A \otimes B=\left\{c_{1}, c_{2}, \cdots, c_{s}\right\}
$$

where

$$
\mathrm{s}=\frac{1}{\mathrm{~d}} \mathrm{mn}
$$

and
$c_{1}=\left(a_{1}, b_{1}\right), c_{2}=\left(a_{2}, b_{2}\right), c_{3}=c_{1}+c_{2}=\left(a_{3}, b_{3}\right), \cdots, c_{m}=\left(a_{m}, b_{m}\right)$, $c_{m+1}=\left(a_{1}, b_{m+1}\right), \cdots, c_{s}=\left(a_{m}, b_{n}\right)$,
has a SRR in $G_{1} \times G_{2}$ 。
Lemma 3: If $(\mathrm{n}, 6)=1$, then $\left(\mathrm{U}_{\mathrm{n}}, \mathrm{f}(\mathrm{n})\right)=1$.
Proof: We observe that U_{n} is even if and only if $n=3 m$. Hence if $(n, 3)=1$, then U_{n} is odd.

Now, $(\mathrm{n}, 2)=1$ implies that

$$
\mathrm{f}(\mathrm{n})=\frac{1}{\mathrm{~d}}\left(\mathrm{U}_{\mathrm{n}-1}+\mathrm{U}_{\mathrm{n}+1}\right)
$$

It can be proved that if U_{n} is odd, then $\left(U_{n}, U_{n=1}+U_{n+1}\right)=1 \quad([1]$, p. 148).

It is clear that $\left(U_{n}, h(n)\right)=1$ implies that $d=1$. Hence $f(n)=U_{n-1}$ $+U_{n+1}$, and thus $\left(U_{n}, f(n)\right)=1$.

From Lemmas 1 and 3, we have
Lemma 4: If $(n, 6)=1$, then $\ell\left(C_{f(n)}\right)=n$.
From (E1), (E2), (E6), (E7), Lemmas 2 and 4, we have
Theorem 1: If

$$
\mathrm{n}=6 \mathrm{~m} \quad \text { or } \quad \mathrm{n}=2^{\alpha} 3^{\beta} \mathrm{m}(\geq 3)
$$

where $(6, \mathrm{~m})=1, \alpha=0,2$, or 3 and $\beta=0,1$, or 3 , then there exists a finite abelian group G such that $\ell(G)=n$.

REFERENCE

1. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 4th Ed., 1960.
