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H-172 Proposed by David Englund, Rockford College, Rockford, Illinois. 

Prove or disprove the "identity,n 

t=l 

where F and L denote the n Fibonacci and Lucas numbers, respect-n n 
ively, and [x] denotes the greatest integer function. 

H-173 Proposed by George Ledin, Jr., Institute of Chemical Biology, University of 
San Francisco, San Francisco, California. 

Solve the Diophantine equation, 

x2 + y2 + 1 = 3xy . 

H-174 Proposed by Daniel W. Burns, Chicago, Illinois. 

Let k be any non-zero integer and {S } be the sequence defined 
n=l 

by Sn = nk . 
Define the Burnfs Function, B(k), as follows: B(k) is the minimal 

value of n for which each of the ten digits, 0, 1, • • • , 9, have occurred 
383 
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in at least one S where 1 ^ m < n. For example, B(l) = 10, B(2) = 
45. Does B(k) exist for all k? If so, find an effective formula or algo-
rithm for calculating it. 

SOLUTIONS 

OLDIES BUT GOODIES 
The following problems are still lacking solutions: 
H-22 H-46 H-74 H-86 H-94 H-IM H-108 H-115 H-125 
H-23 H-60 H-76 H-87 H-100 H-105 H-110 H-116 H-127 
H-40 H-61 H-77 H-90 H-102 H-106 H-113 H-118 H-130 
H-43 H-73 H-84 H-91 H-103 H-107 H-114 H-122 

GENERATING FUNCTIONS 

H-144 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

A. Put 

[(1 - x)(l - y)(l - ax)(l - by)]" 1 = ] T A ^ x 3 ^ 1 1 

m,n=0 

Show that 

n=0 

A x n = 1 - abx2 

n ' n ( 1 - x)(l - ax)(l - bx)(l - abx) 

B. Put 

(1 - xr\l - y ) ^ ( l - axyrA = y B x m y n 

JL~4 m,n J 

m,n=0 

Show that 
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^ B _ x n = (1 - x)""1!! - ax)~X 

n,n 
n=0 

Solution by the Proposer. 

Solution, A. We have 

m n 
A 

m,n 
i=0 j=0 

M m+1 v M , n+1 x (1 - a )(1 - b ) 
(1 - a ) ( l - b) 

so that 

zL* n»n x " 2-J 
n+1 n+1 , (1 - a ^ H l - b " x ) n 

(1 - a) ( l - b) X 

n=0 n=0 
b + ab 

(1 - a ) ( l - b) J l - x ~ l - a x ~ l - b x 1 - abx 

1 \ 1 _ b | 
1 - b | ( 1 - x ) ( l - ax) (1 - bx)(l - abx) \ 

1 - abx2 

(1 - x ) ( l - ax)( l - bx)( l - abx) 

Solution, B. We have 

(1 - x p ^ l - y ) " 1 ! ! - axy)" A 

00 

• E 
(A) 
~tT 

t t r+t s+t a x y 

r , s , t = 0 

where 

(A)t = (X - D(X - 2) • • • (A - t + 1) (t > 1) and (X)0 = 1, 
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so that 

min(m,n) ,^ 
= V —1 

1̂ 1 L-d t! 
t=0 

Hence 

bo oo oo /x \ 

n=0 n=0 t=0 

t 

oo / x \ oo 

- E^ «'IX 
t=0 n=0 

= (1 •- x)"1(l - ax)"A 

Also solved by M. Yoder and D. Jaiswal. 

FACTOR ANALYSIS 

H-145 Proposed by Douglas Lind, University of Virginia, Charlottesville, Virginia. 

If 

e l e 2 e r 
n = PX P2 ••• P r 

is the canonical factorization of n, let A(n) = e- + ••• + e . Show that A(n) 
th r 

^ MFn) + 1 f o r ^ n> where F is the n Fibonacci number. 

Solution by the Proposer. 

Clearly, A(mn) = A(m) + A(n), and if mjn then A(m) < A(n). Also, 
1 = A(p) ^ ^-(F

D) ^ o r anY prime p. We show by induction that A(p ) S 
A(F fc) for all k, except when p = k = 2, when A(4) = A(F4) + 1. The 

p j ^ 
cases when p < 12 are checked directly. Assume the result is true for 
k-1 k 

p . Then since p > 12, by CarmichaeFs theorem ("On the Numerical 
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Factors of the Arithmetical Forms an ± 0 n , " Annals of Math. (2n d Ser.), 15, 
pp. 30-70, Theorem XXIII) there is a prime dividing F , not dividing F , - . I p& p^-J-
Then since F , -, F , , we have 

p K - l | pK 

A(F . ) > 1 + X(F . - ) * k , 

completing the induction. Hence A(p ) ^ X(F t ) except when p = k = 2. 
In the factorization 

e. e 
1 r 

n = Px °80 P r > 
we can assume pj = 2, and ej = 0 if necessary. Then 

F ,-••• ' , F 
e,- e„ 

P ? pr
r 

are pairwise relatively prime since p i , ••• , p r a r e , and since F e# 

divides F for each i , so their product *i 
n 

F e i ' - ' F e l F n . 
Pi p r I 

Hence, 

X(F ) £ X(F e ••• F e ) = X(F e-,) + ••• + X(F e ) * 
V P / P l P r 

£ (et - 1) + e2 + • • • + e r = X(n) - 1 , 

which completes the proof. 

^4/so so/ve<2 fry M. 7o<ier. 

CONVERGING FRACTIONS 

H-147 Proposed by George Ledin, Jr., University of San Francisco, San Francisco, 
California. 

Find the following limits. F, is the k Fibonacci number, L^ is 
the k t h Lucas number, 1T = 3.14159—, a = (1 + V§) /2 = 1 .61803-- , 
m = 1, 2, 3, ••• . 
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F ^ 
Xi = l i m •n+1 

F F 

[Oct. 

X2 = lim 
& n - * Q 

X* = lim 6 n - > o 

XA = l i m 4 n —• o 

F 
m 

m n 

F m 

n 

F 
m 

XR lim n ->o 

m - L n F 

L n - 2 

Solution by David Zeitlin, Minneapolis, Minnesota. 
EDITORIAL NOTE: We have assumed Binet Extensions, 

aX - f 
x a - jS ' x p ' 

in the calculations of x2, x3, • • • , x5 since we are concerned with neighbor-
hoods of zero I 

(1) As n-+oo, F Ja11-> (a - p) . Let p = F ,- and q = F . 
Then, as n->oo, 

F a n -+ (a - p)'1 and -F ?
d fa J%1 -> (a - 0"« 

Since aqQ - p _• o, we have xt = (a - /3)a_1 = 5
( a _ 1 ) / 2 * 5 ' 3 0 9 ^ 1.644. 

For x real , we define L = a + '•(P and F = (<*x - f)/(a - /3). 
X X 

Let Y., i = 2, 3, 4, 5, denote the limits without absolute value signs; 
then X. = Y. 

i 1 

(2) Using LfHospital1 s rule, we have (since ap = -1) , 
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Yo = lim / F / x m \ = lQg <* - lQg P =
 2 l Q g <* - i* 

where i2 = - 1 , and log (-1) = i77, using principal values. Thus* 

X2 = |Y2| = ^(4: log2 a -f TT2)/5 . 

(3) Using LfHospital's rule, we have 

ry ,. x a - p a - ° 
x—*>o F log a - log p 2 log a - irr 

x 

Thus, 

(v/f) - *• Y3 = A l * mIK) = Y 2 - Z ^ • 

and so 

x3 = ir, i = |T , | . i z , r = x 2 | Z s r = ( 4 i o ^ + ff2)"(m"1)/2 

(4) We readily find that 

(vr1**) Y4 = lim F /xx l i XF ] = Y2 • Z3 = 1 , 

and so X4 = 1. 
(5) Using LfHospital's rule,-we have 

Y5 = lini (L - 2)/x = log a + log 0 = iff' , 
X > 0 X 

a n d s o X 5 = | Y 5 | = 7T , 

Also partially solved by the Proposer, and also solved by M. Yoder and D. Jaiswal 
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SHADES OF EULER 

H-149 Proposed by Charles R. Wall, University of Tennessee, Knoxville, Tennessee. 

For s = a + it , let 

P(s) = 2 p ~ S , 

where the summation is over the primes. Set 

CO 

^ a ( n ) r T s = [1 + P ( s ) ] " 1 , 
n=l 

00 

^ b ( n ) n " s = [1 - P ( s ) ] " 1 . 
n=l 

Determine the coefficients a(n) and b(n). 

Solution by the Proposer. 

For n = p * ••• p m let p(n) = a- + • • • + a and Xn) = ( - l ) p ( n ) . * i ^m 1 m 
We claim that 

, i I a l M M n ) ( a l + " ' + a m ) ; 
a(n) = a ^ P ] . . . p J = . . . 

x ' 1 m 

and that b(n) = |a(n)|. 
The proof is by induction on p(n), If p(n) = 1, n is prime and we 

have a(n) + a(l) = 0 and the validity of the assertion is obvious. Since in 
general, we have 

a(n) + a(n/Pi) + •*• + a(n/p ) = 0 , 

the result follows by induction. A similar method works for b(n), except 
that here we have 
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b(n) - bdi/pt) - . . . - b(n/p m ) = 0 . 

Also solved by L. Carlitz, D. hind, D. Khmer, and M. Yoder. 

TRIPLE THREAT 

H-150 Proposed by M. N. S. Swamy, Nova Scotia Technical College, Halifax, Canada. 

Show that 

n-1 p q 
2 5 E E E F 2 r - l = F4n + < n / 3 >< 5 n 2 " 1 4> ' 

p=l q=l r=l 

where F n is the n Fibonacci number. 

Solution by the Proposer. 

To establish this results we need the following identities which have 
already been established earlier (Fibonacci Quarterly, December, 1966, 
pp. 369-372): 

5(F2i + F | + . . . + F2
2 n - 1 ) = F 4 n + 2n 

F4 + F8 + . . . + F 4 n = F 2 n F 2 n + 2 

5(F2F4 + F4F6 + . . . + F 2 n _ 2 F 2 n = F 4 n - 3n 

Hence, 

q 
5 E F2r-1 = % + 2c* • 

1 

Or, 
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p q p p 
5 EE F 2r- l = Z% + 2 L q = W2 + *> + «P 

q=l r = l 1 1 

[Oct. 

Hence , 

n - 1 p q 
2 5 Z E F2r-1 

p=l q=l r = l 

n - 1 n - 1 n - 1 

(L*F2pF2p+2 + 

1 1 

5X>2 + 5I>= 

= F 4 n - 3n + (5/6)n(n - l)(2n - 1) + (5/2)n(n - 1) = 

•= F 4 n . + (n/3)(5n2 - 14) . 

Also solved by C. Peck, M. Yoder, A. Shannon, S. Hamelin, and D. Jaiswal. 

EDITORIAL NOTE. C. B. A. Peck , in h is solution, obtained the identi ty 

25 
n q 

EE 
q=l r = l 

2 r - l L4n+2 + 5 n ( n + 1 ) . " - 3 -

[Continued from page 371. ] 

and a lso ctn a r c cos <p = sin a r c cos cp =sJqi. The r e s u l t s a r e summar i zed 
below. 

a 
-̂ 2/2 -

Wr 
^ v 

iK 


