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Leonhard Euler, the great mathematician of the 18th Century, wrote 
some of the greatest works ever read by man. Among the numerous mathe-
matical interests of this genius was the study of the problem of partitions. 

A partition of an arbitrary positive integer, say n, is a representation 
of n as the sum of any number of integral parts . For example, the number 
6 has 11 partitions, since 

6 = 5 + 1 = 4 + 2 - 4 + 1 + 1 = 3 + 3 = 3 + 2 + 1 = 3 + 1 + 1 + 1 
= 2 + 2 + 2 = 2 + 2 + 1 + 1 = 2 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1 . 

(Problem. Show that the number of partitions of 7 is equal to 15.) 

It is apparent that to find the partition of some positive integer n using 
the same methods we used to find the solution for n = 6 above is a clumsy 
and difficult procedure. To overcome this difficulty, Euler combined the 
partition with a generating function which led to his discovering a powerful 
recurrence formula with which to attack the study of partitions. 

(For those readers who wish to discover how Euler found his recurrence 
formula, the author recommends they read a chapter on partitions in any 
good book on number theory. One such book is An Introduction to the Theory 
of Numbers by Niven andZuckerman, published by John Wiley and Sons, Inc.) 

EULER'S FAMOUS RECURRENCE FORMULA is usually written as 
follows: 

p(n) = p(n - 1) + p(n - 2) - p(n - 5) - p(n - 7) + . . . 

+ (- l)k + 1p(n - fk(3k - 1)) + (-l)k+1p(n - | k ( 3 k + «) + • • • , 

where p(0) = 1 and n,k = 1, 2, 3, ••• . 
To understand the above theorem (1)$ let us go back to the beginning of 

this paper where we have shown that the number n = 6 has 11 partitions. 
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Then, what the formula says in a very precise way is that p(6) = 11, or 
more generally, p(n) is the number of ways an arbitrary positive integer, 
say n, can be partitioned into equal or distinct parts . 

Now that we know what p(n) means, let us find out how to use the 
formula (1) and in so doing, it will become evident how greatly the genius of 
Euler reduced the work required in order to find a solution for each p(n) 
(n = 0, 1, 2, • • • ) . 

We define p(0) = 1 so that in (1) when n = 1, we have 

p(l) = p(l - 1) = p(0) = 1 , 

and now that we have found a value for p(l) , we are in a position to find a 
value (or the number of partitions) for p(2) since for n = 2, we have 

p(2) = p(2 - 1) + p(2 - 2) = p(l) + p(0) = 1 + 1 = 2 . 

We continue in this exact way, using the information that p(0) = 1, p(l) = 1, 
and p(2) = 2 to find a value for p(3) and then step-by-step values for p(4), 
p(5), p(6), and so on. 

In the following are examples of how to find values for the p(n) when 
n = 1, 2, 3, • • • , 7 by using Leonhard Euler1 s very important recurrence 
formula (in (1)): We define p(0) = 1, then 

p( l ) 

p(2) 

P(3) 

p(4) 

p(5) 

p(6) 

= P(1 

= p(2 -

= p ( 3 -

= p ( 4 -

= p ( 5 -

= p ( 6 -

- 1) = p(0) = 

- 1) + p(2 - 2) 

- 1) + p(3 - 2) 

- 1) + p(4 - 2) 

- 1) + p(5 - 2) 

- 1) + p(6 - 2) 

1, 

= p( l ) +p(0) = 1 + 1 = 2 , 

= p(2) + p ( l ) = 2 + 1 = 3 , 

= p(3) +p(2) = 3 + 2 = 5, 

- p ( 5 - 5 ) = p(4) +p(3) - p ( 0 ) 

- p(6 - 5) = p(5) + p(4) - p( l ) 

(Compare this way of finding p(6) = 11 with the way we showed that the num-
ber n = 6 has 11 partitions at the beginning of the paper, and you will 
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realize the magnificence of Eulerfs formula as a systematized labor-saving 
device, especially for large n where his formula is really needed/) 

For our last example, we find p(7): 
p(7) = p(7 - 1) + p(7 - 2) - p(7 - 5) - p(7 - 7) = 

= p(6) + p(5) - p(2) - p(0) = 11 + 7 - 2 - 1 = 15 . 
Continuing in this exact way, we may, of course, step-by-step find values for 
p(8), p(9), p(10), • • • , p(n)9 •••••, where n runs through the positive inte-
gers n = 8, 9, 10, ••• , to infinity. 

It is evident that Euler1 s great recurrence formula (1) systematized the 
study of partitions,, However, to determine the values of p(n) for still large 
n required an enormous amount of work. (For example, to show that p(243) 
= 133978259344888, we must first find a value for each p(n) (n = 0, 1, 2, 
8 8 8 , 242) from p(0) through p (242) inclusive.) To this end, in what follows 
of this paper, we show how to greatly reduce the work required in finding 
values of the p(n) by applying a new theorem from a paper entitled "Recur-
rence Formulas ," by Joseph Arkin and Richard Pollack (The Fibonacci Quar-
terly, Vol. 8, No. 1, February, 1970, pp. 4-5). 

In fact, using formula (1) of "Recurrence Formulas" and applying the 
method that has been found by this author to formula (1) so greatly reduces 
the work involved that to find the value of, say, p(243), it would only be 
necessary to know the value of each p(0) through p(122). The reduction in 
work is evident, since in Euler1 s recurrence formula, to find a value for 
p(243), we must first find a value for each p(0) through p(242). 

To explain the new method of determining the value of any partition 
(p(n)), we shall, as examples, find the values of p(16) and p(17). 

Then, to find the value of p(16), we set up the table on the next page. 

EXPLANATION OF HOW TABLE WAS MADE 
1. On row A we have placed the values of (-1) ^k(3k T 1) for k = 1,2,3, 
2. We then take half of 16 to get 8 and so we write under column a the con-

secutive numbers from 8 through 16. 
3. Now, next to the number 8 (under column a) we place under column b the 

value p(16 - 8), next to the number 9 (under a) we place under column b 
the value p(16 - 9) and so on to complete column b with p(16 - 16) = p(0). 
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A 1 2 - 5 -7 12 15 
1 a b 
| 8 p(8) 

9 p(7) 
pL(f p(6) 

11 P(5) 
12 p(4) 

1 13 p(3) 
14 p(2) 

15 p(l) 
16 p(0) 

p(7) p(6) 
p(7) 

-p(3) 

-p(4) 
-p(5) 
-p(6) 
-p(7) 

-p(D 
-p(2) 
-p(3) 
-p(4) 
-p(5) 

-P(6) 
-p(7) 

p(0) 

P(D 
p(2) 
p(3) 
p(4) 

I 

p(0) 

P(D 1 

4. We fill in the rest of the table in the same way we plot a graph. For 
example, the p(7) under the column where A = 1 and on the row where 
a = 8 is said to be in box (8,1) or more generally this p(7) is found in 
box (a, A) where a = 8 and A = 1. Now, it will be observed that in each 
box (a, A) we find the term p(a - A), or in box (a, -A) we find the term 
-p(a - A) except that there are no terms =Fp(a - A) entered at all when 
£ . 16 = 8 ^ a - A < 0. 

Let us consider a few numerical examples of what was just said. 
Written into the five boxes (8,1), (8,2), (13,-7), (13,15), and (16,7) we 
find respectively the following: p(8 - 1) = p(7), p(8 - 2) = p(6), -p(13 - 7) = 
-p(6), no entry (since 13 - 15 = -2 < 0) andno entry (since 16 - 7 = 9 >8). 

Now that we have filled in the table, we then multiply each partition 
under the column b in the table together with the sum of the partitions direct-
ly to its right and on the same row. We then have the following products 
(row-by-row) i 

p(8)[p(7) + p(6) - p(3) - p(l)] 
p(7)[p(7) - p(4) - p(2)] 
p(6)[-p(5) - p(3)] 
p(5)[-p(6) - p(4)] 
p(4)[-p(7) - p(5) + p(0)] 
p(3)[-p(6) + p(l)] 
p(2)[-p(7) +p(2)] 
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p(l)[p(2) +p(0)] 
p(0)[p(4) + p(l)] 

and after replacing the p( ) with their numerical values, we find p(16) as 
follows: 

22(15 + 1 1 - 3 - 1 ) 

15(15 - 5 - 2) 

11 (-7 - 3) 

7 ( - l l - 5) 
5(-15 - 7 + 1) 

3 ( - l l + 1) 

2 (-15 + 2) 
1(3 + 1) 

1(5 + 1) 

= 

= 

= 
= 
= 

= 

= 
= 
= 

22-22 

15-3 

-11-10 

-7-16 

-5-21 

-3*10 

-2-13 

T 4 

1-6 

= 484 

= 120 

= -110 

= -112 
= -105 

= -30 
= -26 

4 

= _ _6 
Total 231 = p(16) 

To find a numerical value for p(17), we use the exact methods that 
were used to find a numerical value for p(16). The important difference is 
that since 17 is an odd number, we must then take half of 17 - 1 and then 
complete the following table using the same methods that we used to com-
plete a table for p(16) (that i s , we shall begin by writing under column a the 
consecutive numbers from 8 through 17, e t c ) , 

To find the value of p(17), we erect the following table: 

A 

a b 
8 p(9) 
9 P(8) 

10 p(7) 
11 p(6) 
12 p(5) 
13 p(4) 

1 14 p(3) 
15 p(2) 

1 16 p(l) 
[17 p(0) 

1 

p(7) 

2 

p(6) 
p(7) 

- 5 

-p(3) 
-P(4) 
-P(5) 
-P (6) 
-p(7) 

- 7 

-p( l ) 
- p 2 ) 
-P(3) 
-p(4) 
-P(5) 
-p(6) 
-p(7) 

12 

p(0) 
p(l) 
p(2) 
p(3) 
p(4) 
PTBF 

15 

P(0) 
PW 

~R(H 
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We now multiply each partition under column b in the table together 
with the sum of the partitions directly to its right and on the same row to get 
the following products: 

p(9)| 
p(8)| 

P(7), 
P(6)[ 

P(5), 
p(4) 

P(3)! 

p(2)| 

P( l ) | 
P(0)| 

Vp(7) + 

; P ( 7 ) -
; - P ( 5 ) 

; - P ( 6 ) 

; - P ( 7 ) 

; - P ( 6 ) 

•-p(7) 
>(3) + 

>(4) + 

>(5) + 

p(6) -

p(4) -

- P(3)] 

- P(4)] 

p(3) - p ( l ) ] 

P(2)] 

- p(5) + p(0)] 

+ p(D] 
+ P(2)] 

P(0)] 

P( l ) ] 
P(2)] 

and after replacing the p( ) with their numerical values, we find p(17) as 
follows: 

30(15 + 1 1 - 3 - 1 ) 

22(15 - 5 - 2) 

15(-7 - 3) 

1 K - 1 1 - 5) 
7(-15 - 7 + 1) 

5 (-11 + 1) 
3(-15 + 2) 

2(3 + 1) 

1(5 + 1) 

1(7 + 2) 

= 

= 
= 

= 

= 

= 
= 

= 

= 

= 

30-22 

22-8 

-15-10 

-11-16 
-7-21 

-5-10 
-3-13 

2:4 

1-6 

1-9 

= 660 

= 176 

= -150 

= -176 

= -147 

= -50 
= -39 

8 
6 

9 

Total 297 = p(17) . 

In conclusion, it may be interesting to mention that we could have used 
smaller p( ) to find p(16) and p(17). For example: Since p(0) through 
p(8) will determine p(16) and by the methods used in this paper, it is evi-
dent that the numerical values of p(0) through p(4) will enable us to find 
values for p(0) through p(8) then we need only have used the values of the 
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partitions p(0) through p(4) to find p(16). This reduction rule is applicable 
in finding the value of any p(n), however it defeats the purpose of the method 
to reduce too much. 

Of course, applying the method of this paper to find small partitions' 
like p(16) or p(17) does not show the method to its fullest — but when used 
to find a value for large partitions, like say, p(243) = 133978259344888, the 
method shown in this paper very greatly reduces the work involved. 

[Continued from p. 364.] 

and the induction is complete. Thus the C-array is precisely the B-array. 
Thus, !B = C , and further, the pattern observed by Umansky and 

m,p m,p 
Karst persists for all n > 1 , m ^ 2. The case m = 1 was earlier verified. 

Theorem 2 (Independent). If one ignores the signs of the coefficients in 
Array C, then the sum across the m row is L . 

Proof. Interchange the first column on the right with the column on the 
left and set n = 1. The left column is now -L and all of the terms on the 
right are negative. Equality still holds since Theorem 1 is true. Thus 

[m/2] 
y c . = 
Z-/ m,j j=l 

[m/2] 

• X 
j=o 

1 + > C . = > C . = L 
— - ' m , j m 
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