\[(Z) = f_n(x_1, \cdots, x_n) - f_n(s_{n-1}, 1, \cdots, 1) + 1 =

= \left(\sum_{k=1}^{n-1} \binom{s_k - 1}{k} \right) - \left[\sum_{k=1}^{n-1} \binom{s_n - n + k - 1}{k} \right] + 1

= - \sum_{k=1}^{n-1} \binom{s_k - 1}{k} + \sum_{k=s_{n-1}}^{s_{n-1}} \binom{s_{k-1}}{k} + \binom{s_{n-1}}{s_{n-1} - n}

= - \sum_{k=1}^{n-1} \binom{s_k - 1}{k} + \binom{s_n - 1}{s_n - n}

Therefore,

\[g(x_1, \cdots, x_n) = #(X) + #(Y) + #(Z) =

= 2^{s_{n-1}} - 1 + \sum_{k=1}^{s_{n-1}} \binom{s_n - 1}{k} - \sum_{k=1}^{s_{n-1}} \binom{s_{k-1}}{k} + \binom{s_{n-1}}{s_n - n}

= 2^{s_{n-1}} - 1 + \sum_{k=1}^{s_{n-1}} \binom{s_n - 1}{k} - \sum_{k=1}^{s_{n-1}} \binom{s_{k-1}}{k}

SOME RESULTS IN TRIGONOMETRY

BROTHER L. RAPHAEL, F.S.C.
St. Mary's College, California

Graphs of the six circular functions in the first quadrant yield some particularly elegant results involving the Golden Section.

Let \(\phi^2 + \phi = 1\), so that \(\phi = (\sqrt{5} - 1)/2 = 0.61803\) and notice that:

\[\arccos \phi = \arcsin \sqrt{1 - \phi^2} = \arcsin \sqrt{\phi} = 0.90459\]

\[\arcsin \phi = \arccos \sqrt{1 - \phi^2} = \arccos \sqrt{\phi} = 0.66621\]

Further, if \(\tan x = \cos x\), then \(\sin x = \cos^2 x\) and \(\sin^2 x + \sin x = 1\), that is, \(x = \arcsin \phi \) in which case \(\tan \arcsin \phi = \cos \arcsin \phi = \cos \arccos \sqrt{\phi} = \sqrt{\phi}\)

[Continued on p. 392.]