CERTAIN ARITHMETICAL PROPERTIES OF $1 / 2 k(a k \pm 1)$

JOSEPH ARKIN
Spring Valley, New York
Define

$$
A_{u}=\frac{1}{2} u(a u-1) \quad \text { and } \quad B_{u}=\frac{1}{2} u(a u+1)
$$

where $a \neq 0$ is a positive rational integer.
In this paper, we discuss

$$
A_{u}+A_{v}=A_{k}, \quad B_{u}+B_{v}=B_{k}, \quad A_{u} A_{v}=A_{k} \quad \text { and } \quad B_{u} B_{v}=B_{k}
$$

where the suffixes (u, v, k) are positive rational integers. In particular, we shall, for the first time, finally settle the question, and prove that if one solution of

$$
\frac{1}{2} \mathrm{u}(\mathrm{au} \pm 1) \frac{1}{2} \mathrm{v}(\mathrm{v} \pm 1)=\frac{1}{2} \mathrm{k}(\mathrm{k} \pm 1)
$$

exists for integral u, v, k, then an infinite number of other such solutions also exist.

Theorem 1. If a is an odd integer, then the suffixes are integers in

$$
\begin{equation*}
A_{\frac{1}{2}}\left(a^{2} q^{2}+(2 a-1) q+2\right)=A_{a q+1}+A_{\frac{1}{2}}\left(a^{2} q^{2}+2 a q-q\right) \tag{2}
\end{equation*}
$$

and

$$
\mathrm{B}_{\frac{1}{2}}\left(\mathrm{a}^{2} \mathrm{q}^{2}+(2 \mathrm{a}+1) \mathrm{q}+2\right)=\mathrm{B}_{\frac{1}{2}}\left(\mathrm{a}^{2} \mathrm{q}^{2}+2 a q+q\right)+\mathrm{B}_{a q+1}
$$

where $\mathrm{q}=0,1,2, \cdots$ 。
Proof. The proof is immediate, using elementary algebra to show identities.

Theorem 2. If

$$
\begin{equation*}
\mathrm{n}=\frac{1}{2}\left(\mathrm{a}^{4} \mathrm{q}^{2}+(2 a-1) a q+2\right), \quad m=a^{2} q+1 \tag{3}
\end{equation*}
$$

and

$$
\mathrm{w}=\left(\mathrm{a}\left(\mathrm{n}^{2}+1\right)-(\mathrm{n}-1)\right) / 2 \mathrm{a},
$$

then

$$
A_{n}=A_{n-1}+A_{m}=A_{w}-A_{w-1}, \quad \text { (with } q=0,1,2, \cdots \text {) }
$$

where the suffixes are integers when a is an odd integer.
Proof. In (2), we replace q with $a q$ and then solve for \underline{w} in

$$
A_{n}=\frac{1}{2} n(n-1)=\frac{1}{2}(2 a w-a-1)=A_{w}-A_{w-1} .
$$

We complete the proof by observing that \underline{w} and \underline{n} are integers when \underline{a} is odd.

In the same way we got (3), we get the following:
Corollary. If
$\mathrm{n}=\frac{1}{2}\left(\mathrm{a}^{4} \mathrm{q}^{2}+(2 \mathrm{a}+1) \mathrm{aq}+2\right), \quad \mathrm{m}=\mathrm{a}^{2} \mathrm{q}+1, \quad$ and $\mathrm{w}=\left(\mathrm{a}\left(\mathrm{n}^{2}+1\right)+\mathrm{n}-1\right) / 2 \mathrm{a}$, then

$$
\mathrm{B}_{\mathrm{n}}=\mathrm{B}_{\mathrm{n}-1}+\mathrm{B}_{\mathrm{m}}=\mathrm{B}_{\mathrm{w}}-\mathrm{B}_{\mathrm{w}-1} \text {, (with } \mathrm{q}=0,1,2, \cdots \text {) }
$$

where the suffixes are integers when \underline{a} is an odd integer.
Remark. It should be noted that R. T. Hansen, in a recent paper [1], found solutions for the special case when $\mathrm{a}=3$ in (2), for the A sum, and in (3).

We now discuss the paired products in the following:

$$
A_{u} A_{v}=A_{k} \quad \text { and } \quad B_{u} B_{v}=B_{k}
$$

for integer suffixes (u, v, k).
Theorem 3. If \underline{a} is an odd integer, the Pell equation,

$$
\begin{equation*}
K^{2}=8 a p^{2}+8 a+1 \tag{4}
\end{equation*}
$$

is solvable in rational integers, and $K+1$ and $2 \mathrm{p}^{2}+1 \equiv 0(\bmod a)$, then in $A_{v} A_{u}=A_{k}$, the suffixes (u, v, k) are the following integers

$$
\begin{gather*}
\mathrm{k}=\left(2 \mathrm{p}^{2}+1\right)\left(2 \mathrm{p}^{3}+2 \mathrm{p}^{2}+2 \mathrm{p}+1\right) / \mathrm{a} \\
\mathrm{u}=\left(2 \mathrm{p}^{2}+1\right)\left(2 \mathrm{p}^{2}+2 \mathrm{p}+1\right) / \mathrm{a} \tag{4.1}
\end{gather*}
$$

and

$$
\mathrm{v}=(\mathrm{K}+1) / 2 \mathrm{a}=\left(1+\left(8 \mathrm{ap}^{2}+8 \mathrm{a}+1\right)^{\frac{1}{2}}\right) / 2 \mathrm{a}
$$

Proof. It is evident (by elementary means) that the identities in (4.1) balance the equation $A_{v} A_{u}=A_{k}$. We complete the proof by noting that the congruences are self-evident in (4.1).

Theorem 4. If \underline{a} is an odd integer, the Pell equation

$$
\begin{equation*}
K=8 a p^{2}+8 a+1 \tag{5}
\end{equation*}
$$

is solvable in rational integers, and $K-1$ and $4 p^{2}+3 \equiv 0(\bmod a)$, then in $B_{u} B_{v}=B_{k}$, the suffixes (u, v, k) are the following integers

$$
\begin{gather*}
\mathrm{k}=\left(4 \mathrm{p}^{2}+3\right)\left(4 \mathrm{p}^{5}+4 \mathrm{p}^{4}+5 \mathrm{p}^{3}+3 \mathrm{p}^{2}+\mathrm{p}\right) / \mathrm{a} \\
\mathrm{u}=\left(4 \mathrm{p}^{2}+3\right)\left(4 \mathrm{p}^{4}+4 \mathrm{p}^{3}+3 \mathrm{p}^{2}+\mathrm{p}\right) / \mathrm{a} \tag{5.1}
\end{gather*}
$$

and

$$
\mathrm{v}=(\mathrm{K}-1) / 2 \mathrm{a}=\left(1+\left(8 \mathrm{ap}^{2}+8 \mathrm{a}+1\right)^{\frac{1}{2}}\right) / 2 \mathrm{a}
$$

Proof. It is evident (by elementary means) that the identities in (5.1) balance the equation $B_{u} B_{v}=B_{k}$. The congruences in (5.1) of a are selfevident.

Euler [2] proved that if

$$
\mathrm{y}^{2}-\mathrm{Ax}^{2}=\mathrm{B}
$$

is solvable in integers, its solution reduces to the integration of the equation

$$
y_{t+2}-2 m y_{t+1}=0
$$

in finite differences, the integral being

$$
\mathrm{y}=(\mathrm{r}+\mathrm{s}) / 2, \quad \mathrm{x}=(\mathrm{r}-\mathrm{s}) /\left(2(\mathrm{~A})^{\frac{1}{2}}\right)
$$

where

$$
\mathrm{r}=\left(\mathrm{Y}+\mathrm{X}(\mathrm{~A})^{\frac{1}{2}}\right)\left(\mathrm{m}+\mathrm{n}(\mathrm{~A})^{\frac{1}{2}}\right)^{\mathrm{z}-1}, \quad \mathrm{~s}=\left(\mathrm{Y}-\mathrm{X}(\mathrm{~A})^{\frac{1}{2}}\right)\left(\mathrm{m}-\mathrm{n}(\mathrm{~A})^{\frac{1}{2}}\right)^{\mathrm{z}-1}
$$

Y, X being the least integral solutions of $\mathrm{Y}^{2}-\mathrm{AX} X^{2}=B$, and m, n being the least integral solutions of $\mathrm{m}^{2}-\mathrm{An}^{2}=1$. This is Euler's theorem in changed notation.

Theorem 5. If a is an odd prime,

$$
\begin{equation*}
\mathrm{K}_{\mathrm{t}}, \mathrm{P}_{\mathrm{t}} \quad(\mathrm{t}=1,2,3, \cdots) \tag{7}
\end{equation*}
$$

are integer solutions (where K_{1}, P_{1} are the least integer solutions) of

$$
\phi(t)=K_{t}^{2}=8 a P_{t}^{2}+8 a+1
$$

and if there exists a K_{j} and a P_{j} which are the least integer solutions of $\phi(t)$ such that $K_{j}+1 \equiv 0(\bmod a)$ and $2 P_{j}^{2} \equiv-1(\bmod a)$, then the number of solutions of $A_{u} A_{v}=A_{k}$ are infinite for the following integer suffixes (u, v, k):

$$
\begin{gather*}
k=\left(2 P_{i}^{2}+1\right)\left(2 P_{i}^{3}+2 P_{i}^{2}+2 P_{i}+1\right) / a \\
u=\left(2 P_{i}^{2}+1\right)\left(2 P_{i}^{2}+2 P_{i}+1\right) / a \tag{7.1}
\end{gather*}
$$

and

$$
\mathrm{v}=\left(\mathrm{K}_{\mathrm{i}}+1\right) / 2 \mathrm{a}=\left(1+\left(8 \mathrm{aP}_{\mathrm{i}}^{2}+8 \mathrm{a}+1\right)^{\frac{1}{2}}\right) / 2 \mathrm{a}
$$

where $i=j+w(a-1) a \quad(w=0,1,2, \cdots)$.
Proof. Since K_{j}, P_{j} are integers, $K_{j}+1 \equiv 0(\bmod a)$ and $2 P_{j}^{2}+1=$ $0(\bmod a)$, then combining (7.1) with (4.1), it is evident that the u, v, k in (7.1) are integers.

Now, combining (6) with the equation $\phi(\mathrm{j})$ in (7), we write

$$
\left(K_{j}+P_{j}(8 a)^{\frac{1}{2}}\right)\left(m+n(8 a)^{\frac{1}{2}}\right)^{w a(a-1)}=K_{w a(a-1)+j}+P_{w a(a-1)+j}(8 a)^{\frac{1}{2}}
$$

$$
\begin{equation*}
\left(K_{j}-P_{j}(8 a)^{\frac{1}{2}}\right)\left(m-n(8 a)^{\frac{1}{2}}\right)^{w a(a-1)}=K_{w a(a-1)+j}-P_{w a(a-1)+j}(8 a)^{\frac{1}{2}} \tag{8}
\end{equation*}
$$

where $\underline{\mathrm{a}}$ is an odd prime and $\mathrm{w}=0,1,2, \cdots$.
In (6), it is evident that $(\mathrm{m}, \mathrm{a})=1$, and since \underline{a} is an odd prime, we have, by Fermat's familiar theorem (m , a are integers with \underline{a} an odd prime, $(\mathrm{m}, \mathrm{n})=1$, then $\left.\mathrm{m}^{\mathrm{a}-1} \equiv 1(\bmod \mathrm{a})\right)$

$$
\left(\mathrm{m} \pm \mathrm{n}(8 \mathrm{a})^{\frac{1}{2}}\right)^{\mathrm{wa}(\mathrm{a}-1)} \equiv 1(\bmod \mathrm{a})
$$

which leads to (in (8)),

$$
K_{j} \equiv K_{w a(a-1)+j}(\bmod a) \quad \text { and } \quad P_{j} \equiv P_{w a(a-1)+j}
$$

and we complete the proof by noting that these congruences satisfy the conditions of Theorem 5.

Corollary 1. In (7), it is almost immediate that

$$
\begin{equation*}
1 \leq j \leq a(a-1) \tag{9}
\end{equation*}
$$

Since, if $j=s a(a-1)+d$ (where $1=d=a(a-1)$ and $a=0,1,2, \cdots)$, it is evident that

$$
\mathrm{K}_{\mathrm{wa}(\mathrm{a}-1)+\mathrm{j}}=\mathrm{K}_{\mathrm{a}(\mathrm{a}-1)(\mathrm{w}+\mathrm{s})+\mathrm{d}} \equiv \mathrm{~K}_{\mathrm{d}}(\bmod \mathrm{a})
$$

and

$$
P_{\mathrm{wa}(\mathrm{a}-1)+\mathrm{j}}=\mathrm{P}_{\mathrm{a}(\mathrm{a}-1)(\mathrm{w}+\mathrm{s})+\mathrm{d}} \equiv \mathrm{P}_{\mathrm{d}}(\bmod \mathrm{a})
$$

Corollary 2. If \underline{a} is an odd prime, and

$$
K_{j}-1 \equiv 0 \quad(\bmod a) \quad \text { and } \quad 4 P_{j}^{2}+3 \equiv 0(\bmod a)
$$

then the number of solutions of $B_{u} B_{v}=B_{k}$ are infinite for the following integer suffixes (u, v, k):

$$
\begin{gathered}
\mathrm{k}=\left(4 \mathrm{P}_{1}^{2}+3\right)\left(4 \mathrm{P}_{1}^{5}+4 \mathrm{P}_{1}^{4}+5 \mathrm{P}_{1}^{3}+3 \mathrm{P}_{1}^{2}+\mathrm{P}_{1}\right) / \mathrm{a} \\
\mathrm{u}=\left(4 \mathrm{P}_{1}^{2}+3\right)\left(4 \mathrm{P}_{1}^{4}+4 \mathrm{P}_{1}^{3}+3 \mathrm{P}_{1}^{2}+\mathrm{P}_{1}\right) / \mathrm{a}
\end{gathered}
$$

and

$$
\mathrm{v}=\left(\mathrm{K}_{\mathrm{j}}-1\right) / 2 \mathrm{a}=\left(1+\left(8 \mathrm{aP} P_{1}^{2}+8 \mathrm{a}+1\right)^{\frac{1}{2}}\right) / 2 \mathrm{a}
$$

where

$$
i=j+w a(a-1) \quad(w=0,1,2, \cdots)
$$

and

$$
1 \leq j \leq a(a-1)
$$

We shall give one application in pentagonal numbers for infinite paired products in (7-7.1).

In (7-7.1), let $a=3$, then

$$
\mathrm{K}^{2}=24 \mathrm{P}^{2}+25 \quad \text { and } \quad \mathrm{m}^{2}=24 \mathrm{n}^{2}+1
$$

where the first solutions are

$$
\mathrm{K}_{1}=7, \quad \mathrm{P}_{1}=1, \quad \text { and } \quad \mathrm{m}=5, \quad \mathrm{n}=1
$$

We then find that $j=4$ and 6 , so that $i=6 w+4$ and $6 \mathrm{w}+6$, and we write $\left(7+(24)^{\frac{1}{2}}\right)\left(5+(24)^{\frac{1}{2}}\right)^{6 \mathrm{w}+3}=\left(\mathrm{K}_{4}+\mathrm{P}_{4}(24)^{\frac{1}{2}}\right)\left(5+(24)^{\frac{1}{2}}\right)^{6 \mathrm{w}}=\mathrm{K}_{6 \mathrm{w}+4}+\mathrm{P}_{6 \mathrm{w}+4}(24)^{\frac{1}{2}}=\mathrm{r}$,
and
$\left(7-(24)^{\frac{1}{2}}\right)\left(5-(24)^{\frac{1}{2}}\right)^{6 \mathrm{w}+3}=\left(\mathrm{K}_{4}-\mathrm{P}_{4}(24)^{\frac{1}{2}}\right)\left(5-(24)^{\frac{1}{2}}\right)^{6 \mathrm{w}}=\mathrm{K}_{6 \mathrm{w}+4}-\mathrm{P}_{6 \mathrm{w}+4}(24)^{\frac{1}{2}}=\mathrm{s}$,
so that $(\mathrm{r}+\mathrm{s}) / 2=\mathrm{K}_{6 \mathrm{w}+4}$ and $(\mathrm{r}-\mathrm{s}) / 2=\mathrm{P}_{6 \mathrm{w}+4}$, In the same way, we find $(r+s) / 2=K_{6 w+6}$ and $(r-s) / 2=P_{6 w+6}$. Then combining these results with (6) and (7.1), we conclude our application.

REFERENCES

1. R. T. Hansen, "Arithmetic of Pentagonal Numbers," Fibonacci Quarterly, Vol. 8, No. 2 (1970), pp. 83-87.
2. L. Euler, Comm. Arith. Coll., I, pp. 316-336.

[Continued from page 475.]
4). Hence, if odd prime p divides $F_{2 k-1}$, then p is not of the form $4 s+$ 3, thus proving Conjecture 2 of Dmitri Thoro.* The proof by Leonard Weinstein** came to my attention at a later time and is distinct from the above proof.
*Dmitri Thoro, "Two Fibonacci Conjectures," Fibonacci Quarterly, Oct.
1965, pp. 184-186.
** Leonard Weinstein, "Letter to the Editor," Fibonacci Quarterly, Feb.
1966, p. 88.

ERRATA

Please make the following corrections in 'Some Results on Fibonacci Quaternions," Vol. 7, No. 2, pp. 201-210.
Page 201 - The first displayed equation on the page should read:

$$
\mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=-1, \quad \mathrm{ij}=-\mathrm{ji}=\mathrm{k} ; \quad \mathrm{jk}=-\mathrm{kj}=\mathrm{i} ; \quad \mathrm{ki}=-\mathrm{ik}=\mathrm{j} .
$$

Page 205 - Change the bracketed part of Eq. (27) to read:

$$
\left[F_{r}^{2} T_{0}+F_{2 r}\left(Q_{0}-3 k\right)\right]
$$

Page 208 - Change the first terms of Eq. (74) to read:

$$
\mathrm{T}_{\mathrm{n}+\mathrm{t}^{\mathrm{F}} \mathrm{n}+\mathrm{r}}=\cdots
$$

