$$
\beta_{\mathrm{n}}=\frac{u_{\mathrm{n}}}{11 \cdots 1} \text { (b) } \quad(\mathrm{n} \geq 1) ;
$$

then
(9)

$$
\min _{i=0}^{m}\left[1+(b-1) \beta_{n+i}\right]^{\alpha}=b^{\beta} \quad(n \geq 1)
$$

Proof. Since

$$
\beta_{n}=\frac{b^{u_{n}}-1}{b-1} \quad(n \geq 1)
$$

we have

$$
\mathrm{b}^{\mathrm{u}_{\mathrm{k}}}=1+(\mathrm{b}-1) \beta_{\mathrm{k}}
$$

for $\mathrm{k} \geq 1$ and the result readily follows.

REFERENCES

1. L. E. Dickson, History of the Theory of Numbers, Vol. 1, p. 385.
2. Ibid, p. 19.

ON A CONJECTURE OF DMITRI THORO*

DAVID G. BEVERAGE

San Diego State College, San Diego, California
Denoting the $\mathrm{n}^{\text {th }}$ term of the Fibonacci sequence $1,1,2,3,5, \cdots$, by F_{n}, where $F_{n+2}=F_{n+1}+F_{n}$, it is well known that

$$
F_{n}^{2}-F_{n-1} F_{n+1}=(-1)^{n+1}
$$

If odd prime p divides $\mathrm{F}_{\mathrm{n}-1}$, then

$$
\mathrm{F}_{\mathrm{n}}^{2} \equiv(-1)^{\mathrm{n}+1} \quad(\bmod \mathrm{p})
$$

so that $(-1)^{\mathrm{n}+1}$ is a quadratic residue modulo p . Clearly, for $\mathrm{n}=2 \mathrm{k}$, this implies -1 is a quadratic residue modulo p, and accordingly, $p \equiv 1(\bmod$ [Continued on page 537.]

