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Let {x.}°° be a sequence of real numbers with corresponding fractional 
parts {/3.}°°, where 0. = x. - [x.] and the bracket denotes the greatest inte-
ger function. For each n > 1, we define the function F on [ 0,1] so that 
F (x) is the number of those terms among /31$ • • • , /3R whichlie in the inter-
val [0,x), divided by n. Then {x.} is said to be uniformly distributed 
modulo one iff lim F (x) = x for all x € TO, 11. In other words, each n oo—*n L J 
interval of the form [0,x) with x € [ 0 , 1 ] , contains asymptotically a pro-
portion of the p f s equal to the length of the interval, and clearly the same 
will be true for any subinterval (a9p) of [0,1]. The classical Weylcriter-
ion ([1], p. 76) states that {x.}00 is uniformly distributed mod 1 iff 

(1) lim i Y e2nivXj = 0 v > 1. 
n —» oon £—i J — 

j=l 

An example of a sequence which is uniformly distributed mod 1 is { nf} °(10 

where £ is an arbitrary irrational number (see [1], p. 81 for a proof using 
Weyl's criterion). 

The purpose of this paper is to show that the sequence ( in V }°° is uni-
" l 

formly distributed mod 1, where ( v }°° is defined by a linear recurrence of 
the form 

(2) V , = a, ,V , , + • • • +aAV n > 1 , 
n+k k-1 n+k-1 O n 

the initial terms Vj, V2s
 8 °9 , V. being given positive numbers. In (2), we 

assume that the coefficients are non-negative rational numbers with a0 ^ 0, 
k k-1 

and that the associated polynomial x - a, -x - • • • - a-jx - a0, has roots 
Pi> ft•» e o°? Pk which satisfy the inequality 0 < \Pi\< ••• < j/3, | . Addi-
tionally 9 we require that |/3.| f 1 for j = 1, 2, • •• , k.-. 
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In par t icu la rs our r e su l t impl ies that any sequence {u }°° which s a t -
n J 

isfies" the Fibonacci r e c u r r e n c e U , n = U M + U for n > 1 with U< = k-i 
n+2 n+1 n ~ i i 

and U2 = k2 a r b i t r a r y posi t ive initial t e r m s (not n e c e s s a r i l y integers) will 
have the p rope r ty that ( i n U } i s uniformly dis t r ibuted mod 1. With kA = 
1, k2 = 1, we obtain this conclusion for the c lass ica l Fibonacci sequence 

(see [ 2 ] , Theorem 1), while for k1 = 1, k2 = 3 , an analogous r e su l t is 

seen to hold for the Lucas sequence. 

Before proving the ma in t heo rem, we prove two l e m m a s : 

L e m m a 1. If ( x . ) i s uniformly dis t r ibuted mod 1 and {y.} is such 
— J i ( .oo J i 

that .lim ( x . - y . ) = 0, then \ y . ) is uniformly dis t r ibuted mod 1. 
Proof. F r o m the hypothesis and the continuity of the exponential func-

tion, it follows that 

l i m (e 1 - e j ) = 0 . 

But it i s well known ( [ 3 ] , Theorem B , p. 202) that if {y } is a sequence of 

r ea l number s converging to a finite l imi t L , then 

n 
l im — > y. = L 

n—» 00 £2>i= 
1 

rr, , . 27rii/x. 2irii/y. u 
Taking y. = e j - e J ] , we have 

t . 1 \ ^ , 2-nivx. 2mvy., A 
l im - > (e ] - e J j ) = 0 

n - » 00 n Z-^ v J J 

Since 

n 
1 \ " ^ 27T1VX. A 

l im — 7 e 1 = 0 
a-+oo n Z—i J 

1 

by Weyl 's c r i t e r i o n , we also have 
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n 
Ibn i V e27ri^yj = 0 n ~*°° n ^-^ J 

and the sufficiency of Weyl's criterion proves the sequence {y.}°° to be uni-
formly distributed mod 1. 

Lemma 2. If a is a positive algebraic number not equal to one, then 
In a is irrational. 

Proof. Assume, to the contrary, In a = (p/q), where p and q are 
non-zero integers. Then e p / q = a9 so that e p = cfl. But or is algebraic, 
since the algebraic numbers are closed under multiplication ([1] , p. 84). 
Thus e p is algebraic, in turn implying e is algebraic. But e is known to 
be transcendental ([1] , p. 25) so that a contradiction is obtained. 

Theorem. Let \ V }°° be a sequence generated by the recursion relation, 

(2) V M = a. nV M - + • • - + a i v _LI + anV (n > 1) , 
n+k k-1 n+k-1 1 n+1 O n 

where a0, a l s • • • , â __̂  are non-negative rational coefficients with a0 ^ 0, 
k is a fixed integer, and 

(3) Vi = yi9 v2 = y2, • • • , v k = y k 

are given positive values for the initial terms. Further, we assume that the 
k k-1 

polynomial x - ab- i x - • • • - a^x - a0 has k distinct roots j3l9 /32, • • • , 
ft satisfying 0 < \pt\ < • • • < j ^ | and such that none of the roots has mag-
nitude equal to 1. Then (in V }°° is uniformly distributed mod 1. 

Proof. The general solution of the recurrence (2) is 

k 
(4) V n = 5 > j < ? ( n > l ) , 

j=l 

where the arbitrary constants al9 a2, • • • , a^ are determined by the specifi-
cation of the initial terms in (3). [it is easily checked that the determinant of 
the k x k matrix (/3.) does not vanish, so that determination of the a.f s is 
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unique. ] Since the initial terms were not all zero, at least one of the a.fs 
is non-zero. Let p be the largest value of j for which a. f 0, so that 
p > 1. Then 

and 

n Z-# j * ] 

V 
1 -

a B 
P P 

P"1 a.£ 

l p p p 

p - i 

1 

a. 

P 
1L 

But 

< 1 

for j = 19 2, • • • , p - l j and hence 9 

lim . n -*oo| 
p p 

1 , 

or equivalently, 

(5) lim f lnV - lnU j8 | n | = 
n -*oo|^ n I P P| J 

Since p is algebraic, it is easily verified that \p \ is also algebraic. 
Moreover, |jS | f 1 by hypothesis so that ln|/3 | is irrational by application 
of Lemma 2. But the sequence {n^} is uniformly distributed mod 1 when-
ever f is irrational; therefore 9 the sequence 
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{nln| /»p |}^{ln|ppH» 

is uniformly distributed mod 1 and the same is true for the sequence 

M«PiK,r>r-
From (5) and Lemma 1, it is then clear that ( in V }°° is uniformly distributed 

" i 
mod 1 as asserted, q. e. d. 

The specialization to sequences satisfying the Fibonacci recurrence, 
U 2 = U - + U (n > 1) tJ is immediate since the relevant polynomial in 
this case is x2 - x - 1, and there are two distinct roots of unequal magni-
tude, namely 

1 ± %/5 
2 

From the theorem, we conclude ( in U } is uniformly distributed mod 1 
independently of the (non-zero) values specified for Uj and U2. 

Lastly, we give an example to show that our assumption on the roots of 
the associated polynomial cannot be relaxed. Consider the recurrence V 2 

= V for n > 1 with V4 == 1, V2 = 1. Then clearly V = 1 for all n > 1 
so that ( in V }°° is a sequence of zeroes and hence not uniformly distributed 
mod 1. The associated polynomial in this case is x2 - 1 which has two dis-
tinct roots, ±1; however, the roots have magnitude unity, and therefore, the 
conditions of our theorem are not met. 
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