MODULO ONE UNIFORM DISTRIBUTION OF THE SEQUENCE OF LOGARITHMS OF CERTAIN RECURSIVE SEQUENCES

J. L. BROWN, JR., and R. L. DUNCAN

The Pennsylvania State University, University Park, Pennsylvania

Let $\left\{x_{j}\right\}_{1}^{\infty}$ be a sequence of real numbers with corresponding fractional parts $\left\{\beta_{j}\right\}_{1}^{\infty}$, where $\beta_{j}=x_{j}-\left[x_{j}\right]$ and the bracket denotes the greatest integer function. For each $\mathrm{n} \geq 1$, we define the function F_{n} on $[0,1]$ so that $\mathrm{F}_{\mathrm{n}}(\mathrm{x})$ is the number of those terms among $\beta_{1}, \cdots, \beta_{\mathrm{n}}$ whichlie in the interval $[0, x)$, divided by n. Then $\left\{x_{j}\right\}_{1}^{\infty}$ is said to be uniformly distributed modulo one iff $\mathrm{lim}_{\infty} \mathrm{F}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}$ for all $\mathrm{x} \in[0,1]$. In other words, each interval of the form $[0, \mathrm{x})$ with $\mathrm{x} \in[0,1]$, contains asymptotically a proportion of the $\beta_{n}{ }^{\prime} \mathrm{s}$ equal to the length of the interval, and clearly the same will be true for any subinterval (α, β) of $[0,1]$. The classical Weyl criterion ($[1], p .76$) states that $\left\{x_{j}\right\}_{1}^{\infty}$ is uniformly distributed mod 1 iff

$$
\begin{equation*}
\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{e}^{2 \pi \mathrm{i} \nu \mathrm{x}_{\mathrm{j}}}=0 \quad \nu \geq 1 \tag{1}
\end{equation*}
$$

An example of a sequence which is uniformly distributed $\bmod 1$ is $\{n \xi\}_{n=0}^{\infty}$ where $\boldsymbol{\xi}$ is an arbitrary irrational number (see [1], p. 81 for a proof using Weyl's criterion).

The purpose of this paper is to show that the sequence $\left\{\ln \mathrm{V}_{\mathrm{n}}\right\}_{1}^{\infty}$ is uniformly distributed $\bmod 1$, where $\left\{\mathrm{V}_{\mathrm{n}}\right\}_{1}^{\infty}$ is defined by a linear recurrence of the form
(2)

$$
\mathrm{V}_{\mathrm{n}+\mathrm{k}}=\mathrm{a}_{\mathrm{k}-1} \mathrm{~V}_{\mathrm{n}+\mathrm{k}-1}+\cdots+\mathrm{a}_{0} \mathrm{~V}_{\mathrm{n}} \quad \mathrm{n} \geq 1
$$

the initial terms $V_{1}, V_{2}, \cdots, V_{k}$ being given positive numbers. In (2), we assume that the coefficients are non-negative rational numbers with $a_{0} \neq 0$, and that the associated polynomial $x^{k}-a_{k-1} x^{k-1}-\cdots-a_{1} x-a_{0}$, has roots $\beta_{1}, \beta_{2}, \cdots, \beta_{\mathrm{k}}$ which satisfy the inequality $0<\left|\beta_{1}\right|<\ldots<\left|\beta_{\mathrm{k}}\right|$. Additionally, we require that $\left|\beta_{j}\right| \neq 1$ for $j=1,2, \cdots, k$.

In particular, our result implies that any sequence $\left\{U_{n}\right\}_{1}^{\infty}$ which satisfies the Fibonacci recurrence $U_{n+2}=U_{n+1}+U_{n}$ for $n \geq 1$ with $U_{1}=k_{1}$ and $\mathrm{U}_{2}=\mathrm{k}_{2}$ arbitrary positive initial terms (not necessarily integers) will have the property that $\left\{\ln \mathrm{U}_{\mathrm{n}}\right\}_{1}^{\infty}$ is uniformly distributed mod 1. With $\mathrm{k}_{1}=$ 1 , $\mathrm{k}_{2}=1$, we obtain this conclusion for the classical Fibonacci sequence (see [2], Theorem 1), while for $k_{1}=1, k_{2}=3$, an analogous result is seen to hold for the Lucas sequence.

Before proving the main theorem, we prove two lemmas:
Lemma 1. If $\left\{x_{j}\right\}_{1}^{\infty}$ is uniformly distributed $\bmod 1$ and $\left\{y_{j}\right\}_{1}^{\infty}$ is such that $\lim _{j \rightarrow \infty}\left(x_{j}-y_{j}\right)=0$, then $\left\{y_{j}\right\}_{i}^{\infty}$ is uniformly distributed mod ${ }_{1}^{1}$.

Proof. From the hypothesis and the continuity of the exponential function, it follows that

$$
\lim _{j \rightarrow \infty}\left(e^{2 \pi i v x_{j}}-e^{2 \pi i \nu y_{j}}\right)=0
$$

But it is well known ([3], Theorem B, p. 202) that if $\left\{\gamma_{n}\right\}$ is a sequence of real numbers converging to a finite limit L, then

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}} \sum_{1}^{\mathrm{n}} \gamma_{j}=\mathrm{L}
$$

Taking $\gamma_{j}=e^{2 \pi i \nu x_{j}}-e^{2 \pi i \nu y_{j}}$, we have

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}} \sum_{\mathrm{j}=1}^{\mathrm{n}}\left(\mathrm{e}^{2 \pi \mathrm{i} \nu \mathrm{x}_{\mathrm{j}}}-\mathrm{e}^{\left.2 \pi \mathrm{i} \nu \mathrm{y}_{j}\right)=0}\right.
$$

Since

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}} \sum_{1}^{\mathrm{n}} \mathrm{e}^{2 \pi \mathrm{i} \nu \mathrm{x}_{\mathrm{j}}}=0
$$

by Weyl's criterion, we also have

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}} \sum_{1}^{\mathrm{n}} \mathrm{e}^{2 \pi \mathrm{i} \nu y_{j}}=0
$$

and the sufficiency of Weyl's criterion proves the sequence $\left\{y_{j}\right\}_{1}^{\infty}$ to be uniformly distributed mod 1.

Lemma 2. If α is a positive algebraic number not equal to one, then $\ln \alpha$ is irrational.

Proof. Assume, to the contrary, $\ln \alpha=(p / q)$, where p and q are non-zero integers. Then $e^{p / q}=\alpha$, so that $e^{p}=\alpha^{q}$. But α^{p} is algebraic, since the algebraic numbers are closed under multiplication ([1], p. 84). Thus e^{p} is algebraic, in turn implying e is algebraic. But e is known to be transcendental ([1], p. 25) so that a contradiction is obtained.

Theorem. Let $\left\{\mathrm{V}_{\mathrm{n}}\right\}_{1}^{\infty}$ be a sequence generated by the recursion relation,
(2) $\quad \mathrm{V}_{\mathrm{n}+\mathrm{k}}=\mathrm{a}_{\mathrm{k}-1} \mathrm{~V}_{\mathrm{n}+\mathrm{k}-1}+\cdots+\mathrm{a}_{1} \mathrm{~V}_{\mathrm{n}+1}+\mathrm{a}_{0} \mathrm{~V}_{\mathrm{n}} \quad(\mathrm{n} \geq 1)$,
where $a_{0}, a_{1}, \cdots, a_{k-1}$ are non-negative rational coefficients with $a_{0} \neq 0$, k is a fixed integer, and

$$
\begin{equation*}
\mathrm{V}_{1}=\gamma_{1}, \quad \mathrm{~V}_{2}=\gamma_{2}, \cdots, \quad \mathrm{~V}_{\mathrm{k}}=\gamma_{\mathrm{k}} \tag{3}
\end{equation*}
$$

are given positive values for the initial terms. Further, we assume that the polynomial $\mathrm{x}^{\mathrm{k}}-\mathrm{a}_{\mathrm{k}-1} \mathrm{x}^{\mathrm{k}-1}-\cdots-\mathrm{a}_{1} \mathrm{x}-\mathrm{a}_{0}$ has k distinct roots $\beta_{1}, \beta_{2}, \cdots$, β_{k} satisfying $0<\left|\beta_{1}\right|<\cdots<\left|\beta_{\mathrm{k}}\right|$ and such that none of the roots has magnitude equal to 1 . Then $\left\{\ln V_{n}\right\}_{1}^{\infty}$ is uniformly distributed mod 1.

Proof. The general solution of the recurrence (2) is

$$
\begin{equation*}
\mathrm{V}_{\mathrm{n}}=\sum_{\mathrm{j}=1}^{\mathrm{k}} \alpha_{\mathrm{j}} \beta_{\mathrm{j}}^{\mathrm{n}} \quad(\mathrm{n} \geq 1) \tag{4}
\end{equation*}
$$

where the arbitrary constants $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{\mathrm{k}}$ are determined by the specification of the initial terms in (3). [It is easily checked that the determinant of the kxk matrix $\left(\beta_{\mathrm{j}}^{\mathrm{i}}\right)$ does not vanish, so that determination of the $\alpha_{j}^{\prime} \mathrm{s}$ is
unique.] Since the initial terms were not all zero, at least one of the α_{j}^{\prime} s is non-zero. Let p be the largest value of j for which $\alpha_{j} \neq 0$, so that $p \geq 1$. Then

$$
\mathrm{V}_{\mathrm{n}}=\sum_{1}^{\mathrm{p}} \alpha_{\mathrm{j}} \beta_{\mathrm{j}}^{\mathrm{n}}
$$

and

$$
\left|1-\frac{v_{n}}{\alpha_{p} \beta_{p}^{n}}\right|=\left|\sum_{1}^{p-1} \frac{\alpha_{j} \beta_{j}^{n}}{\alpha_{p} \beta_{p}^{n}}\right| \leq \sum_{1}^{p-1}\left|\frac{\alpha_{j}}{\alpha_{p}}\right|\left|\frac{\beta_{j}}{\beta_{p}}\right|^{n}
$$

But

$$
\left|\frac{\beta_{\mathrm{j}}}{\beta_{\mathrm{p}}}\right|<1
$$

for $j=1,2, \cdots, p-1$, and hence,

$$
\lim _{\mathrm{n}}\left(\frac{\mathrm{v}_{\mathrm{n}}}{\left|\alpha_{\mathrm{p}} \beta_{\mathrm{p}}\right|}\right)=1
$$

or equivalently,

$$
\begin{equation*}
\lim _{\mathrm{n} \rightarrow \infty}\left[\ln V_{\mathrm{n}}-\ln \left|\alpha_{\mathrm{p}} \beta_{\mathrm{p}}\right|^{\mathrm{n}}\right]=0 \tag{5}
\end{equation*}
$$

Since β_{p} is algebraic, it is easily verified that $\left|\beta_{p}\right|$ is also algebraic. Moreover, $\left|\beta_{p}\right| \neq 1$ by hypothesis so that $\ln \left|\beta_{p}\right|$ is irrational by application of Lemma 2. But the sequence $\{n \xi\}_{1}^{\infty}$ is uniformly distributed mod 1 whenever ξ is irrational; therefore, the sequence

$$
\left\{n \ln \left|\beta_{p}\right|\right\}_{1}^{\infty}=\left\{\ln \left|\beta_{p}\right|^{n}\right\}_{1}^{\infty}
$$

is uniformly distributed mod 1 and the same is true for the sequence

$$
\left\{\ln \left|\alpha_{p}\right|\left|\beta_{p}\right|^{n}\right\}_{i}^{\infty}
$$

From (5) and Lemma 1, it is then clear that $\left\{\ln \mathrm{V}_{\mathrm{n}}\right\}_{1}^{\infty}$ is uniformly distributed $\bmod 1$ as asserted. q.e.d.

The specialization to sequences satisfying the Fibonacci recurrence, $\mathrm{U}_{\mathrm{n}+2}=\mathrm{U}_{\mathrm{n}+1}+\mathrm{U}_{\mathrm{n}}(\mathrm{n} \geq 1)$, is immediate since the relevant polynomial in this case is $x^{2}-x-1$, and there are two distinct roots of unequal magnitude, namely

$$
\frac{1 \pm \sqrt{5}}{2} .
$$

From the theorem, we conclude $\left\{\ln \mathrm{U}_{\mathrm{n}}\right\}_{1}^{\infty}$ is uniformly distributed mod 1 independently of the (non-zero) values specified for U_{1} and U_{2}.

Lastly, we give an example to show that our assumption on the roots of the associated polynomial cannot be relaxed. Consider the recurrence $\mathrm{V}_{\mathrm{n}+2}$ $=\mathrm{V}_{\mathrm{n}}$ for $\mathrm{n} \geq 1$ with $\mathrm{V}_{1}=1, \mathrm{~V}_{2}=1$. Then clearly $\mathrm{V}_{\mathrm{n}}=1$ for all $\mathrm{n} \geq 1$ so that $\left\{\ln V_{n}\right\}_{1}^{\infty}$ is a sequence of zeroes and hence not uniformly distributed mod 1. The associated polynomial in this case is $x^{2}-1$ which has two distinct roots, ± 1; however, the roots have magnitude unity, and therefore, the conditions of our theorem are not met.

REFERENCES

1. I. Niven, "Irrational Numbers," Carus Mathematical Monograph Number II, The Math. Assn. of America, John Wiley \& Sons, Inc., N. Y. , 1956,
2. L. Kuipers, "Remark on a Paper by R. L. Duncan Concerning the Uniform Distribution mod 1 of the Sequence of Logarithms of the Fibonacci Numbers," The Fibonacci Quarterly, Vol. 7, No. 5, Dec. 1969, pp. 465-466, 473.
3. P. R. Halmos, Measure Theory, D. Van Nostrand Co. , Inc. , N.Y. , 1950.
