MODULO ONE UNIFORM DISTRIBUTION OF THE SEQUENCE OF LOGARITHMS OF CERTAIN RECURSIVE SEQUENCES

J. L. BROWN, JR., and R. L. DUNCAN

The Pennsylvania State University, University Park, Pennsylvania

Let $\{x_j\}_{i}^{\infty}$ be a sequence of real numbers with corresponding fractional parts $\{\beta_j\}_{i}^{\infty}$, where $\beta_j = x_j - [x_j]$ and the bracket denotes the greatest integer function. For each $n \ge 1$, we define the function F_n on [0,1] so that $F_n(x)$ is the number of those terms among β_1, \dots, β_n which lie in the interval [0,x), divided by n. Then $\{x_j\}_{i=1}^{\infty}$ is said to be uniformly distributed modulo one iff $\lim_{n \to \infty} F_n(x) = x$ for all $x \in [0,1]$. In other words, each interval of the form [0,x) with $x \in [0,1]$, contains asymptotically a proportion of the β_n 's equal to the length of the interval, and clearly the same will be true for any subinterval (α, β) of [0,1]. The classical Weyl criterion ([1], p. 76) states that $\{x_i\}_{i=1}^{\infty}$ is uniformly distributed mod 1 iff

(1)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} e^{2\pi i \nu x_j} = 0 \quad \nu \ge 1.$$

An example of a sequence which is uniformly distributed mod 1 is $\{n\xi\}_{n=0}^{\infty}$ where ξ is an arbitrary irrational number (see [1], p. 81 for a proof using Weyl's criterion).

The purpose of this paper is to show that the sequence $\{\ln V_n\}_1^{\infty}$ is uniformly distributed mod 1, where $\{V_n\}_1^{\infty}$ is defined by a linear recurrence of the form

(2)
$$V_{n+k} = a_{k-1}V_{n+k-1} + \cdots + a_0V_n \quad n \ge 1$$
,

the initial terms V_1, V_2, \dots, V_k being given positive numbers. In (2), we assume that the coefficients are non-negative rational numbers with $a_0 \neq 0$, and that the associated polynomial $x^k - a_{k-1}x^{k-1} - \dots - a_1x - a_0$, has roots $\beta_1, \beta_2, \dots, \beta_k$ which satisfy the inequality $0 < |\beta_1| < \dots < |\beta_k|$. Additionally, we require that $|\beta_j| \neq 1$ for $j = 1, 2, \dots, k$.

Dec. 1970 MODULO ONE UNIFORM DISTRIBUTION

In particular, our result implies that any sequence $\{U_n\}_{i=1}^{\infty}$ which satisfies the Fibonacci recurrence $U_{n+2} = U_{n+1} + U_n$ for $n \ge 1$ with $U_1 = k_1$ and $U_2 = k_2$ arbitrary positive initial terms (not necessarily integers) will have the property that $\{\ln U_n\}_{i=1}^{\infty}$ is uniformly distributed mod 1. With $k_1 = 1$, $k_2 = 1$, we obtain this conclusion for the classical Fibonacci sequence (see [2], Theorem 1), while for $k_1 = 1$, $k_2 = 3$, an analogous result is seen to hold for the Lucas sequence.

Before proving the main theorem, we prove two lemmas:

<u>Lemma 1.</u> If $\{x_j\}_{j=1}^{\infty}$ is uniformly distributed mod 1 and $\{y_j\}_{j=1}^{\infty}$ is such that $\lim_{j \to \infty} (x_j - y_j) = 0$, then $\{y_j\}_{j=1}^{\infty}$ is uniformly distributed mod 1.

<u>**Proof.**</u> From the hypothesis and the continuity of the exponential function, it follows that

$$\lim_{j \to \infty} (e^{2\pi i\nu x} j - e^{2\pi i\nu y} j) = 0.$$

But it is well known ([3], Theorem B, p. 202) that if $\{\gamma_n\}$ is a sequence of real numbers converging to a finite limit L, then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \gamma_{j} = L .$$

Taking $\gamma_j = e^{2\pi i\nu x}j - e^{2\pi i\nu y}j$, we have

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} (e^{2\pi i \nu x_{j}} - e^{2\pi i \nu y_{j}}) = 0$$

Since

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} e^{2\pi i \nu x} j = 0$$

by Weyl's criterion, we also have

$$\lim_{n \to \infty} \frac{1}{n} \sum_{1}^{n} e^{2\pi i \nu y_j} = 0$$

and the sufficiency of Weyl's criterion proves the sequence $\left\{y_{j}\right\}_{1}^{\infty}$ to be uniformly distributed mod 1.

Lemma 2. If α is a positive algebraic number not equal to one, then $\ln \alpha$ is irrational.

<u>Proof.</u> Assume, to the contrary, $\ln \alpha = (p/q)$, where p and q are non-zero integers. Then $e^{p/q} = \alpha$, so that $e^p = \alpha^q$. But α^p is algebraic, since the algebraic numbers are closed under multiplication ([1], p. 84). Thus e^p is algebraic, in turn implying e is algebraic. But e is known to be transcendental ([1], p. 25) so that a contradiction is obtained.

<u>Theorem</u>. Let $\{V_n\}_{i=1}^{\infty}$ be a sequence generated by the recursion relation,

(2)
$$V_{n+k} = a_{k-1}V_{n+k-1} + \cdots + a_1V_{n+1} + a_0V_n$$
 (n ≥ 1),

where a_0, a_1, \dots, a_{k-1} are non-negative rational coefficients with $a_0 \neq 0$, k is a fixed integer, and

(3)
$$V_1 = \gamma_1, \quad V_2 = \gamma_2, \cdots, \quad V_k = \gamma_k$$

are given positive values for the initial terms. Further, we assume that the polynomial $x^{k} - a_{k-1} x^{k-1} - \cdots - a_{1}x - a_{0}$ has k distinct roots $\beta_{1}, \beta_{2}, \cdots$, β_{k} satisfying $0 < |\beta_{1}| < \cdots < |\beta_{k}|$ and such that none of the roots has magnitude equal to 1. Then $\{\ln V_{n}\}_{1}^{\infty}$ is uniformly distributed mod 1.

Proof. The general solution of the recurrence (2) is

(4)
$$V_n = \sum_{j=1}^k \alpha_j \beta_j^n \quad (n \ge 1)$$

where the arbitrary constants $\alpha_1, \alpha_2, \dots, \alpha_k$ are determined by the specification of the initial terms in (3). [It is easily checked that the determinant of the k x k matrix (β_i^i) does not vanish, so that determination of the α_i 's is

484

unique.] Since the initial terms were not all zero, at least one of the α_j 's is non-zero. Let p be the largest value of j for which $\alpha_j \neq 0$, so that $p \ge 1$. Then

$$V_n = \sum_{1}^{p} \alpha_j \beta_j^n$$

and

$$\left|1 - \frac{\mathbf{V}_{\mathbf{n}}}{\alpha_{\mathbf{p}}\beta_{\mathbf{p}}^{\mathbf{n}}}\right| = \left|\sum_{1}^{\mathbf{p}-1} \frac{\alpha_{\mathbf{j}}\beta_{\mathbf{j}}^{\mathbf{n}}}{\alpha_{\mathbf{p}}\beta_{\mathbf{p}}^{\mathbf{n}}}\right| \le \sum_{1}^{\mathbf{p}-1} \left|\frac{\alpha_{\mathbf{j}}}{\alpha_{\mathbf{p}}}\right| \left|\frac{\beta_{\mathbf{j}}}{\beta_{\mathbf{p}}}\right|^{\mathbf{n}}$$

But

 $\left|\frac{\beta_{j}}{\beta_{p}}\right| < 1$

for $j = 1, 2, \dots, p-1$, and hence,

$$\lim_{n \to \infty} \left(\frac{V_n}{\left| \alpha_p \beta_p^n \right|} \right) = 1 ,$$

or equivalently,

(5)
$$\lim_{n \to \infty} \left[\ln V_n - \ln \left| \alpha_p \beta_p \right|^n \right] = 0$$

Since β_p is algebraic, it is easily verified that $|\beta_p|$ is also algebraic. Moreover, $|\beta_p| \neq 1$ by hypothesis so that $\ln |\beta_p|$ is irrational by application of Lemma 2. But the sequence $\{n\xi\}_{1}^{\infty}$ is uniformly distributed mod 1 whenever ξ is irrational; therefore, the sequence

$$\left\{ n \ln \left| \beta_{p} \right| \right\}_{1}^{\infty} = \left\{ \ln \left| \beta_{p} \right|^{n} \right\}_{1}^{\infty}$$

is uniformly distributed mod 1 and the same is true for the sequence

$$\left\{\ln \left|\alpha_{\mathbf{p}}\right| \left|\beta_{\mathbf{p}}\right|^{n}\right\}_{1}^{\infty}$$
.

From (5) and Lemma 1, it is then clear that $\{\ln V_n\}_1^{\infty}$ is uniformly distributed mod 1 as asserted. <u>q.e.d.</u>

The specialization to sequences satisfying the Fibonacci recurrence, $U_{n+2} = U_{n+1} + U_n$ (n \geq 1), is immediate since the relevant polynomial in this case is $x^2 - x - 1$, and there are two distinct roots of unequal magnitude, namely

$$\frac{1\pm\sqrt{5}}{2}$$

From the theorem, we conclude $\{\ln U_n\}_1^{\infty}$ is uniformly distributed mod 1 independently of the (non-zero) values specified for U_1 and U_2 .

Lastly, we give an example to show that our assumption on the roots of the associated polynomial cannot be relaxed. Consider the recurrence $V_{n+2} = V_n$ for $n \ge 1$ with $V_1 = 1$, $V_2 = 1$. Then clearly $V_n = 1$ for all $n \ge 1$ so that $\{\ln V_n\}_1^{\infty}$ is a sequence of zeroes and hence not uniformly distributed mod 1. The associated polynomial in this case is $x^2 - 1$ which has two distinct roots, ± 1 ; however, the roots have magnitude unity, and therefore, the conditions of our theorem are not met.

REFERENCES

- I. Niven, "Irrational Numbers," <u>Carus Mathematical Monograph Number</u> II, The Math. Assn. of America, John Wiley & Sons, Inc., N. Y., 1956,
- L. Kuipers, "Remark on a Paper by R. L. Duncan Concerning the Uniform Distribution mod 1 of the Sequence of Logarithms of the Fibonacci Numbers," <u>The Fibonacci Quarterly</u>, Vol. 7, No. 5, Dec. 1969, pp. 465-466, 473.
- 3. P. R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., N.Y., 1950.

 $\sim \rightarrow \sim \sim$