Therefore, the Fibonacci congruence relation is true for any prime p and any integer n. The Lucas congruence relation can be proved by an argument similar to that given above.

PALINDROME CUBES

B-183 Proposed by Gustavus J. Simmons, Sandia Corporation, Albuquerque, New Mexico.

A positive integer is a palindrome if its digits read the same forward or backward. The least positive integer n, such that n^{2} is a palindrome but n is not, is 26. Let S be the set of n such that n^{3} is a palindrome but n is not. Is S empty, finite, or infinite?

Comment by the Proposer.
Since 2201^{3} is the palindrome 10662526601, S is not empty. This is all that is known about the set S .

[Continued from page 506.]

$\mathrm{a}=$29 30	$\mathrm{~b}=$	35
31	113	$\mathrm{c}=$
32	97	113
33	65	120
34	34	65
35	145	65
36	73	145
37	61	102
38	37	65
39	181	70
40	41	181
	101	50
		101

