Therefore, the Fibonacci congruence relation is true for any prime p and any integer n. The Lucas congruence relation can be proved by an argument similar to that given above.

PALINDROME CUBES

B-183 Proposed by Gustavus J. Simmons, Sandia Corporation, Albuquerque, New Mexico.

A positive integer is a palindrome if its digits read the same forward or backward. The least positive integer n, such that n^2 is a palindrome but n is not, is 26. Let S be the set of n such that n^3 is a palindrome but n is not. Is S empty, finite, or infinite?

Comment by the Proposer.

Since 2201^3 is the palindrome 10662526601, S is not empty. This is all that is known about the set S.

[Continued from page 506.]

a	=	29	b	=	35	\mathbf{c}	=	48
		30			113			11 3
		31			97			120
		32			65			65
		33			34			65
		34			145			145
		35			73			102
		36			61			65
		37			37			70
		38			181			181
		39			41			50
		40			101			101