COMBINATORIAL PROBLEMS FOR GENERALIZED FIBONACCI NUMBERS

VERNER E. HOGGATT, JR.
San Jose State College, San Jose, California
Theorem 1. The number of subsets of $\{1,2,3, \cdots, n\}$ which have k elements and satisfy the constraint that i and $i+j(j=1,2,3, \cdots, a)$ do not appear in the same subsetis

$$
\mathrm{f}_{\mathrm{a}}(\mathrm{n}, \mathrm{k})=(\mathrm{n}-\underset{\mathrm{k}}{\mathrm{ka}+\mathrm{a}})
$$

where $\binom{n}{k}$ is the binomial coefficient. We count ϕ, the empty set, as a subset.

Comments. Before proceeding with the proof, we note with Riordan [1], that for $a=1$, the result is due to Kaplansky. If, for fixed n, one sums over all k-part subsets, he gets Fibonacci numbers,

$$
F_{n+1}=\sum_{k=0}^{[(n+1) / 2]}\binom{n-k+1}{k} \quad, \quad(n \geq 0)
$$

where [x] is the greatest integer function. The theorem above is a problem given in Riordan [2].

Proof. Let $\mathrm{g}_{\mathrm{a}}(\mathrm{n}, \mathrm{k})$ be the number of admissible subsets selected from the set $\{1,2,3, \cdots, n\}$. Then

$$
g_{a}(n+1, k)=g_{a}(n, k)+g_{a}(n-a, k-1)
$$

since $g_{a}(n, k)$ counts all admissible subsets without element $n+1$ while $g_{a}(n-a, k-1)$ counts all the admissible subsets which contain element $\mathrm{n}+1$. If element $\mathrm{n}+1$ is in any such subset, then the elements $\mathrm{n}, \mathrm{n}-1$, $\mathrm{n}-2, \mathrm{n}-3, \cdots, \mathrm{n}-\mathrm{a}+1$ cannot be in the subset. We select $\mathrm{k}-1$ elements from the $\mathrm{n}-\mathrm{a}$ elements $1,2,3, \cdots, \mathrm{n}-\mathrm{a}$ to make admissible subsets and add $n+1$ to each subset. The count is precisely $g_{a}(n-a, k-1)$.

$$
f_{a}(n, k)=\left(n-k_{k}^{k}+a\right), \quad k \geq 0
$$

But, since the $f_{a}(n, k)$ are binomial coefficients,

$$
\left.\begin{array}{rl}
f_{a}(n+1, k)=(n+1-k a+a \\
k
\end{array}\right)=\binom{n-k a+a}{k}+\binom{n-a-(k-1) a+a}{k-1} .
$$

Thus, $f_{a}(n, k)$ and $g_{a}(n, k)$ satisfy the same recurrence relation. Since the boundary conditions are

$$
\mathrm{g}_{\mathrm{a}}(\mathrm{n}, 1)=\mathrm{f}_{\mathrm{a}}(\mathrm{n}, 1)=\mathrm{n},
$$

and

$$
\mathrm{g}_{\mathrm{a}}(1, \mathrm{n})=\mathrm{g}_{\mathrm{n}}(1, \mathrm{n})=0, \quad \mathrm{n}>1,
$$

the arrays are identical. This concludes the proof of Theorem 1.
We note that, for fixed $k \geq 0$, the number of k-part subsets of $\{1,2,3, \cdots, n\}$ for $n=0,1,2, \cdots$, are aligned in the $k^{\text {th }}$ column of Pascal's left-adjusted triangle. If one sums for fixed n the number of k part subsets, one obtains

$$
\mathrm{v}_{\mathrm{a}}(\mathrm{n}, \mathrm{a})=\sum_{k=0}^{\left[\frac{n+a}{a+1}\right]} f_{\mathrm{n}}(\mathrm{n}, \mathrm{k})=\sum_{k=0}^{\left[\frac{n+a}{a+1}\right]}\binom{n-k a+a}{k},
$$

where [x] is the greatest integer function. These are precisely the generalized Fibonacci numbers of Harris and Styles [3]. There,

$$
u(n ; p, 1)=\sum_{k=0}^{[n /(p+1)]}\binom{n-k p)}{k}
$$

so that

$$
V_{a}(n, a)=u(n+a ; n, 1)
$$

Clearly, if we select only certain k-part subsets ($b \geq 1$)

$$
\mathrm{V}_{\mathrm{a}}(\mathrm{n}, \mathrm{a}, \mathrm{~b})=\sum_{\mathrm{k}=0}^{\left[\frac{n+a}{\mathrm{a}+\mathrm{b}}\right]}\binom{m-k a+\mathrm{a}}{\mathrm{~kb}}
$$

then

$$
V_{a}(n, a, b)=u(n+a ; a, b)
$$

Thus, one has a nice combinatorial problem in restricted subsets whose solution sequences are the generalized Fibonacci numbers defined in [3] and studied in [4], [5], [6], [7], [11], and [12].

GENERALIZATION

We extend Theorem 1 to all generalized Pascal triangles.
Theorem 2. The number of subsets of $\{1,2,3, \cdots, n\}$ with k elements in which $i, i+j(j=1,2, \ldots$, a) are not in the same subset nor are simultaneously all of the integers $i+j a+1(j=0,1,2, \cdots, r-1)$, in the same subset, is

$$
\mathrm{f}_{\mathrm{a}}(\mathrm{n}, \mathrm{k}, \mathrm{r})=\left\{\begin{array}{c}
\mathrm{n}-\mathrm{ka}+\mathrm{a} \\
\mathrm{k}
\end{array}\right\}_{\mathrm{r}}
$$

where

$$
\left(1+x+x^{2}+\cdots+x^{r-1}\right)^{n}=\sum_{i=0}^{n(r-1)}\left\{\begin{array}{c}
n \\
i
\end{array}\right\}_{r} x^{i}
$$

We call

$$
\left\{\begin{array}{l}
n \\
i
\end{array}\right\}_{r}
$$

the r -nomial coefficients, and n designates the row and i designates the column in the generalized Pascal triangle induced by the expansion of

$$
\left(1+x+x^{2}+\cdots+x^{r-1}\right)^{n}, n=0,1,2, \cdots
$$

Proof. Let $g_{a}(n, k, r)$ be the number of admissible subsets selected with elements from $\{1,2,3, \cdots, n\}$. Then

$$
\begin{aligned}
g_{a}(n+1, k, r)=g_{a}(n, k, r) & +g_{a}(n-a, k-1, r)+g_{a}(n-2 a, k-2, r) \\
& +\cdots+g_{a}(n-(r-1) a, k-r+1, r)
\end{aligned}
$$

Consider the set of numbers $n+1, n-a+1, n-2 a+1, n-3 a+1, \cdots$, $n-(r-1) a+1$. The general term $g_{a}(n-s a, k-s, r)$ gives the number of admissible subsets which require the use of $n+1, \mathrm{n}-\mathrm{a}+1, \mathrm{n}-2 \mathrm{a}+1$, $\cdots, n-(s-1) a+1$, disallows the integer $n-s a+1$, but permits the use of the integers $\mathrm{n}=1,2,3, \cdots, \mathrm{n}-\mathrm{sa}$ in the subsets subject to the constraints that integers $i, i+j(j=1,2,3, \cdots, a)$ do not appear in the same subset. This concludes the derivation of the recurrence relation.

Next, consider

$$
f_{a}(\mathrm{n}, \mathrm{k}, \mathrm{r})=\left\{\begin{array}{c}
\mathrm{n}-\mathrm{ka}+\mathrm{a} \\
\mathrm{k}
\end{array}\right\}_{\mathrm{r}}
$$

Since $f_{a}(n, k, r)$ is an r-nomial coefficient, then

$$
\begin{aligned}
f_{a}(n+1, k, r)=f_{a}(n, k, r) & +f_{a}(n-a, k-1, r)+\cdots+f_{a}(n-s a, k-s, r) \\
& +\cdots+f_{a}(n-(r-1) a, k-r+1, r)
\end{aligned}
$$

Thus, $f_{a}(n, k, r)$ and $g_{a}(n, k, r)$ both obey the same recurrence relation, and

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{a}}(\mathrm{n}, 1, \mathrm{r})=\mathrm{g}_{\mathrm{a}}(\mathrm{n}, 1, \mathrm{r})=\mathrm{n} \\
& \mathrm{f}_{\mathrm{a}}(1, \mathrm{n}, \mathrm{r})=\mathrm{g}_{\mathrm{a}}(1, \mathrm{n}, \mathrm{r})=0, \quad \mathrm{n}>1
\end{aligned}
$$

for all $\mathrm{n} \geq 0$, so that the arrays are identical for all $\mathrm{k} \geq 0$.
Summing, for fixed $\mathrm{n} \geq 0$, over all numbers of all k-part subsets yields

$$
\mathrm{v}_{\mathrm{a}}(\mathrm{n}, \mathrm{a}, \mathrm{r})=\sum_{\mathrm{k}=0}^{\left[\frac{(\mathrm{n}+\mathrm{a})(\mathrm{r}-1)}{1+\mathrm{a}(\mathrm{r}-1)}\right]}\{\mathrm{n}-\underset{\mathrm{k}}{\mathrm{ka}}+\mathrm{a}\}_{\mathrm{r}}
$$

If we now generalize the "generalized Fibonacci numbers, $u(n ; p, q)$, of Harris and Styles [3]" to the generalized Pascal triangles obtained from the expansions $\left(1+x+x^{2}+\cdots+x^{r-1}\right)^{n}, n=0,1,2,3, \cdots$,

$$
u(n ; p, q, r)=\sum_{k=0}^{\left[\frac{n(r-1)}{q+p(r-1)}\right]}\left\{\begin{array}{c}
n-k p \\
k q
\end{array}\right\}_{r}
$$

there are precisely

$$
p+\left[\frac{q}{r-1}\right]+1
$$

ones at the beginning of each $u(n ; p, q, r)$ sequence. Our application starts with just one 1. Let

$$
m=\left[\frac{q}{r-1}\right]
$$

the greatest integer in $q /(r-1)$. Then,

$$
u(n+a+m ; a, b, r)=\sum_{k=0}^{\left[\frac{(n+a+m)(r-1)}{b+a(r-1)}\right]}\left\{\begin{array}{c}
n+a+m-k a \\
k b
\end{array}\right\}_{r}
$$

Thus the solution set to the number of subsets of $\{1,2,3, \cdots, n\}$ subject to the constraints that no pairs $i, i+j(j=1,2,3, \cdots, a)$ are to be allowed in the same subset, nor are all of $i+j a+1(j=0,1,2,3, \cdots, r-1)$ to be allowed in the same subset, are the generalized Fibonacci numbers of Harris and Styles generalized to Pascal triangles induced from the expansions of

$$
\left(1+x+x^{2}+\cdots+x^{r-1}\right)^{n}, \quad n=0,1,2,3, \cdots .
$$

One notes that the r-nacci generalized Fibonacci numbers

$$
u(n ; 1,1, r)=\sum_{k=0}^{\left[\frac{n(r-1)}{r}\right]}\left\{\begin{array}{c}
n-k \\
k
\end{array}\right\}_{r}
$$

are not generally obtained by setting $a=0$ in the above formulation. However, the generalized Fibonacci sequences for the binomial triangle are obtained if $r=2$. The other r-nacci number sequences are obtained if the subsets are simply restricted from containing simultaneously r consecutive integers from the set $\{1,2,3, \cdots, n\}$ but there is no restriction of $r>2$ about pairs of consecutive integers. Thus, for these r-nacci sequences ($r>2$), we cannot simply set $a=1$. However, the formulas look identical. Let

$$
\mathrm{V}(\mathrm{n} ; 1,1, \mathrm{r})=\mathrm{u}(\mathrm{n}+1 ; 1,1, \mathrm{r}) ;
$$

then

$$
\mathrm{V}(\mathrm{n} ; 1,1, \mathrm{r})=\sum_{\mathrm{k}=0}^{\left[\frac{(\mathrm{n}+1)(\mathrm{r}-1)}{\mathrm{r}}\right]}\left\{n-\frac{k}{k}+1\right\}_{r}
$$

which is seen to be the generalization of Kaplansky's lemma to generalized Pascal triangles.

REFERENCES

1. John Riordan, Combinatorial Analysis, Wiley and Sons, Inc., New York, p. 198.
2. John Riordan, Combinatorial Analysis, Wiley and Sons, Inc., New York, p. 222.
3. V. C. Harris and Carolyn C. Styles, "A Generalization of Fibonacci Numbers," Fibonacci Quarterly, 2 (1964), pp. 277-289.
4. D. E. Daykin, "Representations of Natural Numbers as Sums of Generalized Fibonacci Numbers," Journal of the London Mathematical Society, April 1960, pp. 143-168.
5. S. G. Mohanty, "On a Partition of Generalized Fibonacci Numbers," Fibonacci Quarterly, February 1968, pp. 22-33.
6. V. E. Hoggatt, Jr, "A New Angle in Pascal's Triangle," Fibonacci Quarterly, Oct. , 1968, pp. 221-234.
7. Nannette Cox, John W. Phillips, and V. E. Hoggatt, Jr., "Some Universal Counterexamples," Fibonacci Quarterly, April, 1970, pp. 242248.
8. C. A. Church, Jr., "On Enumeration of Certain Triangular Arrays," Fibonacci Quarterly, April, 1970, pp. 235-241.
9. J. E. Freund, "Restricted Occupancy Theory - A Generalization of Pascal's Triangle," American Mathematical Monthly, January, 1956, pp. 20-27.
10. C. A. Church, Jr., "Combination and Successions," Mathematics Magazine, May-June, 1968, pp. 123-128.
11. Nannette S. Cox, "Unique Integer Representation by Generalized Fibonacci Numbers Derived from Pascal's Triangle," San Jose State College Masters Thesis, July, 1970.
12. John W. Phllips, "Integer Representation as Sums of Generalized Fibonacci Numbers," San Jose State College Masters Thesis, June, 1970.
