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Theorem 1. The number of subsets of ( l , 2, 3, • • • , n} which have 
k elements and satisfy the constraint that i and i + j (j = 1, 2, 3, • * • , a) 
do not appear in the same subset i s 

ci i \ / n - ka + a\ fa( n'k ) = \ k J 

(0 where I t ] is the binomial coefficient. We count </), the empty set, as a 
subset. 

Comments. Before proceeding with the proof, we note with Riordan 
[ 1 ] , that for a = 1, the result is due to Kaplansky. If, for fixed n, one 
sums over all k-part subsets, he gets Fibonacci numbers, 

[<n-H)/2] . 

*»+1- L ( n \ k + 1 > tai<» 
k=0 

where [x] is the greatest integer function. The theorem above is a prob-
lem given in Riordan [2], 

Proof. Let g (n,k) be the number of admissible subsets selected from 
——~——- a 

the set ( l , 2, 3, • •• , n}. Then 

y (n + l,k) = g (n,k) + g (n - a, k - 1) , 
d. <x <x 

since g (n,k) counts all admissible subsets without element n + 1 while a 
g (n - a, k - 1) counts all the admissible subsets which contain element a 
n + 1. If element n + 1 is in any such subset, then the elements n, n - 1, 
n - 2 , n - 3 , • • • , n - a + 1 cannot be in the subset. We select k - 1 ele-
mentsfromthe n - a elements 1, 2, 3, ••• , n - a to make admissible sub-
sets and add n + 1 to each subset. The count is precisely g (n - a, k - 1). 

a 
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Consider 

<a<".» = ( n - i r a ) . k > 0 

But, since the f (n,k) are binomial coefficientss a 

fa(n + l,k) (n + l - k a + a \ [ n - k a + a \ / n - a - (k-l)a + a\ k ; - \ k j { k - i ) 

f (n,k) + f ( n - a, k - 1) 
d d 

Thus, f (n,k) and g (n,k) satisfy the same recurrence relation. Since the a a 
boundary conditions are 

5a(n,l) = fa(n,l) = n , 

and 

g (l,n) = g_(l,n) = 0, n > 1 , 
d II 

the arrays are identical. This concludes the proof of Theorem 1. 
We note that5 for fixed k > 09 the number of k-part subsets of 

( l , 2, 3, •••., n} for n = 0, 1, 2, • • • , are aligned in the k column of 
Pascal1 s left-adjusted triangle. If one sums for fixed n the number of k-
part subsets, one obtains 

[n-fal fn+al 

a+l'J La+lJ V (n,a) 
d 

I^=A lr=A ^ ' k=0 k=0 

where [x] is the greatest integer function. These are precisely the gener-
alized Fibonacci numbers of Harris and Styles [3]. There, 
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[n/(p+D] 
u(n;p,l) = 

k=0 k=o \ / 

so that 

V ( n , a ) = u(n + a; n , l ) a 

Clearly, if we select only certain k-part subsets (b > 1) 

TiH-al 
La+bJ 

T.h...» - Z (•" 'I? + S) 
k=0 

then 

V (n,a,b) = u(n + a; a,b) . a 

Thusj one has a nice combinatorial problem in restricted subsets whose 
solution sequences are the generalized Fibonacci numbers defined in [ 3 ] and 
studied in [4] , [5] , [6] , [7] , [11], and [12], 

GENERALIZATION 

We extend Theorem 1 to all generalized Pascal triangles, 
Theorem 2. The number of subsets of ( l , 2, 3, • • • , n} with k ele-

ments in which i, i + j (j = 1, 2, • • • , a) are not in the same subset nor 
are simultaneously all of the integers i + j a + 1 (j = 0, 1, 2, • • • , r - 1 ) , 
in the same subset, is 

c ( i \ j n - ka + a i fa(n,k,r) = j k ^ 

where 
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n n(r-l) 
(1 +x +x2 + ••• +xr-1) = £ inf -1 

- , X 
1 

i=0 

We call 

n 
i , 

the r-nomial coefficients, and n designates the row and i designates the 
column in the generalized Pascal triangle induced by the expansion of 

i n 

(1 + x + x2 + . - . + x r X) , n = 0 , 1 , 2 , » " . 

Proofs Let g (n9ksr) be the number of admissible subsets selected 
— — — — • • — 3 , 

with elements from {l , 29 3, • • • , n}. Then 

g (n + l ,k,r) = g (n,k,r) + g (n - a,k - l 5 r ) + g (n - 2a,k - 2,r) a a. a. d 
+ ••• + g (n - (r - l')a, k - r + l ,r) a 

Consider the set of numbers n + 1, n - a + 1, n - 2 a + l , n - 3 a + 1, * ° ° * 
n - (r - l)a + 1. The general term g (n - sa5 k - s9r) gives the number of 

a 
admissible subsets which require the use of n + 1, n - a + l 5 n - 2a + 1„ 
• « ' , n - ( s - l)a + 1? disallows the integer n - sa + 15 but permits the use 
of the integers n = 1, 2, 3? • • • , n - sa in the subsets subject to the con-
straints that integers i, i + j (j = 1, 2, 3, * •e , a) do not appear in the 
same subset,, This concludes the derivation of the recurrence relation. 

Next9 consider 
o , , x In - ka + a j f a ( n > k > r ) = j k Jr 

Since f (n.k.r) is an r-nomial coefficients then aN 

f (n + l ,k ,r) = f (n,k,r) + f (n - a, k - l , r ) + ••• + f (n - sa9 k - s s r) a a a a 

+ . . . + f (n - (r - l)a, k - r + l , r ) . a 
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Thus, f (n,k,r) and g (n,k,r) both obey the same recurrence relation, and 

f a (n , l , r ) = g a (n , l , r ) = n 

f ( l ,n , r ) = g ( l ,n , r ) = 0, n > 1 
d d. 

for all n > 0, so that the arrays are identical for all k > 0. 
Summing, for fixed n > 0, over all numbers of all k-part subsets 

yields 

Rn+a)(r-l)1 
L l+a(r-irj 

T7 / \ V * J n - ka + a [ 
Va(n,a,r) = ^ j fc ^ 

If we now generalize the "generalized Fibonacci numbers, u(n; p,q), of 
Harris and Styles [3]Tf to the generalized Pascal triangles obtained from the 
expansions (1 + x + x2 + • • • + x r " 1 ) , n = 0, 1, 2, 3, • • • , 

f n(r-l) 1 
[q+p(r-l)J 

u(n;p9q,r) = ^ j n " q
k ^ 

k=0 

there are precisely 

ones at the beginning of each u(n; p ,q , r ) sequence. Our application starts 
with just one 1. Let 

m • [ A ] • 
the greatest integer in q/(r - 1). Then, 
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Rn+a+mHr-lfl 
L b+a(r-l) J 

u(n + a + m; a ,b , r ) 
k=0 

n + a + m - kal 
kb | 

461 

Thus the solution set to the number of subsets of {l, 2, 3, a • • , n} subject 
to the constraints that no pairs i, i + j (j = 1, 2, 3, • • • 5a) are to be 
allowed inthe same subset, nor are all of i + ja + 1 (j = 0 , 1 , 2 , 3 , - * - , r - 1) 
to be allowed in the same subset, are the generalized Fibonacci numbers of 
Harris and Styles generalized to Pascal triangles induced from the expansions 
of 

-1 n 
(1 + x + x2 + ••• + x ) , n = 0, 1, 25 3S " ° . 

One notes that the r-nacci generalized Fibonacci numbers 

rn(r- l) ' 

u(n; 1,1, r) = J j | n - kj 

k=0 

are not generally obtained by setting a = 0 in the above formulation. How-
ever, the generalized Fibonacci sequences for the binomial triangle are ob-
tained if r = 2e The other r-nacci number sequences are obtained if the 
subsets are simply restricted from containing simultaneously r consecutive 
integers from the set {l , 2, 3, * * - , n} but there is no restriction of r > 2 
about pairs of consecutive integers8 Thus, for these r-nacci sequences 
(r > 2), we cannot simply set a = 1. However, the formulas look identical. 

Let 

V(n; 1,1, r) = u(n + 1; 1,1, r) ; 

then 
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(n+l)(r-l)1 
r 

V(n; 1,1, r) = ^ 
k=0 

which is seen to be the generalization of Kaplanskyfs lemma to generalized 
Pascal triangles. 
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