ON A CLASS OF DIFFERENCE EQUATIONS

RAYMOND E. WHITNEY
Lock Haven State College, Lock Haven, Pennsylvania
The purpose of this article is to examine sequences generated by a certain class of difference equations and to encourage further investigations into their properties. We shall be interested in sequences satisfying the recurrence relation,
where k is a positive integer.
It may be shown by a simple inductive argument that
(2)

$$
\mathrm{v}_{\mathrm{n}}=\frac{(\mathrm{k}+1)^{\mathrm{F}_{\mathrm{n}}}-1}{\mathrm{k}} \quad(\mathrm{n} \geq 1)
$$

where F_{n} denotes the $n^{\text {th }}$ Fibonacci number.
When we wish to emphasize the dependence on the parameter, k, we shall write $\mathrm{v}_{\mathrm{n}} \equiv \mathrm{v}_{\mathrm{n}}(\mathrm{k})$.

$$
\text { A MODEL FOR }\left\{v_{n}\right\}_{n=1}^{\infty}
$$

Let b denote an integer $(b \geq 2)$. Consider the sequence defined as follows:

$$
\begin{equation*}
\theta_{\mathrm{n}}=\frac{\mathrm{F}_{\mathrm{n}}}{11 \cdots 1} \text { (b) } \quad(\mathrm{n} \geq 1) . \tag{3}
\end{equation*}
$$

where (b) denotes base b. Obviously,

$$
\begin{equation*}
\theta_{n}=\sum_{i=0}^{F_{n}-1} b^{i}=\frac{b^{F_{n}}-1}{b-1} \quad(n \geq 1) \tag{4}
\end{equation*}
$$

As above, we shall write $\theta_{\mathrm{n}} \equiv \theta_{\mathrm{n}}$ (b). From Eqs. (2) and (4), we see that

$$
\mathrm{v}_{\mathrm{n}}(\mathrm{k}+1)=\theta_{\mathrm{n}}(\mathrm{~b})
$$

$b^{n}-1$ has been called the $n^{\text {th }}$ Fermatian function of b and

$$
B_{n} \equiv \frac{b^{n}-1}{b-1}
$$

has been called a reduced Fermatian of index b. (See [1].) We note that $B_{F_{n}}=\theta_{\mathrm{n}}$.

If we are willing to abuse the language, we may extend the allowed values of b . Formally, if $\mathrm{k}=0$, Eq. (1) becomes the usual Fibonacci recurrence relation. Then $b=k+1=1$, and if we interpret the $1^{\prime} s$ in (3) as tally marks,

$$
\begin{aligned}
\theta_{\mathrm{n}} & =1(1)^{\mathrm{F}_{\mathrm{n}}-1}+\cdots+1(1)^{0} \\
& =\frac{\mathrm{F}_{\mathrm{n}}}{11 \cdots 1}
\end{aligned}
$$

Similarly, if $k=-1$, then $b=0$. With the agreement that $0^{0}=1$,

$$
\begin{align*}
\theta_{\mathrm{n}} & =1(0)^{\mathrm{F}_{\mathrm{n}}-1}+\cdots+1(0)^{0} \\
& =\frac{\mathrm{F}_{\mathrm{n}}}{11 \cdots 1}(0) \tag{0}
\end{align*}
$$

Thus $\theta_{\mathrm{n}} \equiv 1$. But the solution of (1) in this case is

$$
\mathrm{v}_{\mathrm{n}}(-1) \equiv 1 \quad(\mathrm{n} \geq 1)
$$

Using similar interpretations for negative bases, we can extend (1) and (3) to negative integers.

$$
\text { DIVISIBILITY PROPERTIES OF }\left\{v_{n}\right\}_{n=1}^{\infty}
$$

It is interesting to note that if

$$
\left\{\mathrm{v}_{\mathrm{n}}(1)\right\}_{\mathrm{n}=1}^{\infty}
$$

contains an infinite number of primes, then there would be an infinite number of Fibonacci and Mersenne primes.

In this section, we shall assume $k=9 \quad(b=10)$ unless otherwise specified.

Theorem 1.
(a)
(b)

$$
\left.\begin{array}{ll}
\left(\theta_{\mathrm{n}}, \mathrm{n}+1\right.
\end{array}\right)=1 \quad(\mathrm{n} \geq 1) ;
$$

Proof. a) Deny! Then there is a pair such that $\left(\theta_{m}, \theta_{m+1}\right)=d>1$. But $\mathrm{d}\left|\mathrm{v}_{\mathrm{n}+2}, \mathrm{~d}\right| \mathrm{v}_{\mathrm{n}+1}$ implies $\mathrm{d} \mid \mathrm{v}_{\mathrm{n}}$. Thus, after repeated use of the above, we would have $\left(\theta_{1}, \theta_{2}\right) \geq d \geq 1$. Contradiction.
b) Similar to part a).

Theorem 2. None of the θ_{n} are perfect.
Proof. Any odd perfect number is congruent to 1 modulo 4 (see [2]). But

$$
\theta_{\mathrm{n}} \equiv 3(\bmod 4) \quad \text { for } \mathrm{n} \geq 3
$$

Theorem 3. $3 \mid \theta_{\mathrm{n}}$ if and only if $4 \mid \mathrm{n}$.
Proof. Clearly, $3 \mid \theta_{n}$ if and only if $3 \mid F_{n}$. Thus $F_{4} \mid F_{n}$ and the result follows.

Theorem 4. $11 \mid \theta_{\mathrm{n}}$ if and only if $3 \mid \mathrm{n}$.
Proof. $11 \mid \theta_{n}$ if and only if $2=F_{3} \mid F_{n}$ and the result follows.
Theorem 5. a) $7 \mid \theta_{\mathrm{n}}$ if and only if 12 n ;
b) $13 \mid \theta_{\mathrm{n}}$ if and only if 12 n .

Proof. a) Consider the congruences,

$$
\begin{array}{rlrl}
1 & \equiv 1(\bmod 7), & 10 & \equiv 3(\bmod 7), \\
100 & \equiv 2(\bmod 7) \\
1,000 & \equiv-1(\bmod 7), & 10,000 & \equiv-3(\bmod 7), \\
100,000 & \equiv-2(\bmod 7)
\end{array}
$$

Clearly $7 \mid \theta_{n}$ if and only if $6 \mid F_{n}$ ．But $6 \mid F_{n}$ is equivalent to $2 \mid F_{n}$ and $3 \mid F_{n}$ of $3 \mid n$ and $4 \mid n$ and the result follows．
b）Similar to a），considering the congruences modulo 13.
In light of the above，we have the unusual result that $3 \mid \theta_{n}$ and $11 \mid \theta_{n}$ implies $7 \mid \theta_{\mathrm{n}}$ and $13 \mid \theta_{\mathrm{n}}$ 。

We mention some other results which the reader might like to establish．
Assertion 1：$\quad 18 \mid F_{n}$ implies $19 \mid \theta_{n}$ 。
Assertion 2：$\quad 41 \mid \theta_{n}$ if and only if $5 \mid n$ ．
Assertion 3：$\quad 271 \mid \theta_{\mathrm{n}}$ if and only if $5 \mid \mathrm{n}$ 。
Assertion 4：$\quad 73\left|\theta_{n}, 101\right| \theta_{n}, \quad 137 \mid \theta_{n}$ if and only if $6 \mid n$ 。

$$
\text { GENERATING FUNCTIONS FOR }\left\{\mathrm{v}_{\mathrm{n}}(\mathrm{k})\right\}_{\mathrm{n}=1}^{\infty}
$$

One area which might be worth investigating is that of obtaining gener－ ating functions for the sequences．Of course，since

$$
\begin{equation*}
\frac{1}{1-x-x^{2}}=\sum_{i=1}^{\infty} F_{i} x^{i-1} \tag{6}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{1}{1-x-x^{2}}=\sum_{i=1}^{\infty} \frac{\log \left[1+k v_{i}(k)\right]}{\log (k+1)} x^{i-1} \tag{7}
\end{equation*}
$$

but one should be able to do better than this．

ALTERNATE RELATIONSHIPS

We present two results along these lines．
Theorem 6．

$$
\theta_{n+2}(2)=2 \prod_{i=1}^{n}\left[1+\theta_{i}(2)\right]-1 \quad(n \geq 1)
$$

Proof．Since

$$
2^{\mathrm{F}_{\mathrm{n}}}=1+\theta_{\mathrm{n}}(2)
$$

and

$$
\sum_{i=1}^{n} F_{i}=F_{n+2}-1 \quad(n \geq 1)
$$

the result easily follows.
Theorem 7。

$$
1+\theta_{2 n}(2)=\prod_{i=1}^{n}\left[1+\theta_{2 i-1}(2)\right] \quad(n \geq 1)
$$

Proof. The result is readily obtained from

$$
\sum_{i=1}^{n} F_{2 i-1}=F_{2 n}
$$

GENERALIZATION TO OTHER RECURSIVELY DEFINED SEQUENCES
We conclude our discussion with one result in this area.
Theorem 8. If

$$
\left\{u_{n}\right\}_{n=1}^{\infty}
$$

is a recursively defined positive integer sequence satisfying the linear difference equation

$$
\begin{equation*}
\sum_{i=0}^{m} \alpha_{i} u_{n+i}=\beta \quad(n \geq 1) \quad(\text { order } m) \tag{8}
\end{equation*}
$$

and boundary conditions $\left\{u_{1}, u_{2}, \cdots, u_{m-1}\right\}$, where β and α_{i} for $i \in\{0$, $1, \cdots, m\}$ are constants, and if

$$
\beta_{\mathrm{n}}=\frac{u_{\mathrm{n}}}{11 \cdots 1} \text { (b) } \quad(\mathrm{n} \geq 1) ;
$$

then
(9)

$$
\min _{i=0}^{m}\left[1+(b-1) \beta_{n+i}\right]^{\alpha}=b^{\beta} \quad(n \geq 1)
$$

Proof. Since

$$
\beta_{n}=\frac{b^{u_{n}}-1}{b-1} \quad(n \geq 1)
$$

we have

$$
\mathrm{b}^{\mathrm{u}_{\mathrm{k}}}=1+(\mathrm{b}-1) \beta_{\mathrm{k}}
$$

for $\mathrm{k} \geq 1$ and the result readily follows.

REFERENCES

1. L. E. Dickson, History of the Theory of Numbers, Vol. 1, p. 385.
2. Ibid, p. 19.

ON A CONJECTURE OF DMITRI THORO*

DAVID G. BEVERAGE

San Diego State College, San Diego, California
Denoting the $\mathrm{n}^{\text {th }}$ term of the Fibonacci sequence $1,1,2,3,5, \cdots$, by F_{n}, where $F_{n+2}=F_{n+1}+F_{n}$, it is well known that

$$
F_{n}^{2}-F_{n-1} F_{n+1}=(-1)^{n+1}
$$

If odd prime p divides $\mathrm{F}_{\mathrm{n}-1}$, then

$$
\mathrm{F}_{\mathrm{n}}^{2} \equiv(-1)^{\mathrm{n}+1} \quad(\bmod \mathrm{p})
$$

so that $(-1)^{\mathrm{n}+1}$ is a quadratic residue modulo p . Clearly, for $\mathrm{n}=2 \mathrm{k}$, this implies -1 is a quadratic residue modulo p, and accordingly, $p \equiv 1(\bmod$ [Continued on page 537.]

