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The purpose of this a r t i c l e i s to examine sequences genera ted by a c e r -
tain c l a s s of difference equations and to encourage fur ther invest igat ions into 
the i r p r o p e r t i e s . We shall be in te res ted in sequences satisfying the r e c u r -
rence re la t ion , 

(1) v _, 0 = v , 1 + v + kv v , n ; vi = Vo = 1 (n > 1) , 
n+2 n+1 n n n+1 \ L — / » 

where k i s a posit ive integer . 

It may be shown by a s imple inductive a rgument that 

F 

(2) v n = — ~ — — - (n ^ 1) , 

where F denotes the n Fibonacci number . n 
When we wish to emphas ize the dependence on the p a r a m e t e r , k , we 

shall wr i te v 5 v (k). n n 

A MODEL FOR ( v }°° , L nJ n= l 

Let b denote an in teger (b > 2). Consider the sequence defined a s 

follows: 

F n 
(3) 6Q = 1 1 . . - 1 (b) (n > 1) 

where (b) denotes base b. Obviously, 

F - 1 F 
(4) 6R = E b1 = ^ ^ i (n> 1) 

i=0 D 

470 
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As above* we shall write 6n = 6R(b), From Eqs. (2) and (4), we see that 

vn(k + D = ena>) . 

b - 1 has been called the n Fermatian function of b and 

Bn = T ^ T 

has been called a reduced Fermatian of index be (See [1].) We note that 

F n 
n 

If we are willing to abuse the language, we may extend the allowed 
values of b. Formally9 if k ~ os Eqa (1) becomes the usual Fibonacci r e -
currence relation. Then b = k + 1 = 1, and if we interpret the l f s in (3) as 
tally marks, 

F -1 
en = i d ) n + . . . + i ( i ) ° 

F 
= 11 . . . I (1) . 

Similarlyj if k = - 1 , then b = 0e With the agreement that 0° = 1, 

F -1 
en = i(o) n + . . . + KO)0 

= 1 1 - . . 1 (0) 

Thus 6 = 1. But the solution of (1) in this case is 

vn(-l) s i (n > 1) . 

Using similar interpretations for negative bases, we can extend (1) and (3) to 
negative integers* 
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DIVISIBILITY PROPERTIES OF { v j ^ 

It is interesting to note that if 

contains an infinite number of primes, then there would be an infinite number 
of Fibonacci and Mersenne primes. 

In this section, we shall assume k = 9 (b = 10) unless otherwise 
specified. 

Theorem 1. 
(a) (6n, n + 1 ) = 1 (n> 1) ; 

(b) < V n + 2 ) = 1 ( n ^ 1 ) -
Proof, a) Deny! Then there is a pair such that (0 ,0 - ) = d > 1. 

But d|v + 2 , d|v - implies d|v . Thus, after repeated use of the above, 
we would have (0i,02) — ^ — l e Contradiction. 

b) Similar to part a). 
Theorem 2. None of the 0 are perfect. 

n ^ Proof. Any odd perfect number is congruent to 1 modulo 4 (see [2]). 
But 

0 = 3 (mod 4) for n > 3, 

Theorem 3. 3|fl if and only if 4|n. 
Proof. Clearly, s\e if and only if S |F • Thus F J F and t h e r e -

suit follows. 
Theorem 4. 11 \6 if and only if 3|n. 
Proof. 110 if and only if 2 = F 0 F and the result follows. i n J 31 n 
Theorem 5. a) 7 0 if and only if 12 n; 

b) 1310 if and only if 12 |n. 
Proof, a) Consider the congruences, 

1 = 1 (mod 7) , 10 = 3 (mod 7) , 100 = 2 (mod 7), 
1,000 = -1 (mod 7), 10,000 = -3 (mod 7), 100,000 = -2 (mod 7). 
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Clearly 7|fl if and only if 6 | F . But 6 |F is equivalent to 2 | F and 
F of 3|n and 4|n and the result follows, 

b) Similar to a) 9 considering the congruences modulo 13. 
In light of the above, we have the unusual result that 3\6 and l l | e 

implies T| 6> and 13|# . * ' n ' n 
We mention some other results which the reader might like to establish. 
Assertion Is 18 |F implies 19|0 . 
Assertion 2: 4 1 l ^ n ^ anc^ o n ^ y ^ 5ln° 
Assertion 3; 271|0 if and only if 5|n. 
Assertion 4s 73J0 , 10l|6 , 137J0 if and only if 6|n . 

GENERATING FUNCTIONS FOR {v (k )}*^ 

One area which might be worth investigating is that of obtaining gener-
ating functions for the sequences. Of course, since 

i - i (6) - = Z V 
1 - x - x2 i=l 

we have 

oo i o g [ l + kv.(k)] . , 
(7) 77777-5 * * » * * 
but one should be able to do better than this. 

ALTERNATE RELATIONSHIPS 

We present two results along these lines. 
Theorem 6. 

6 (2) = 2 TT [1 + 0.(2)] - 1 (n > 1) 
i=l 

Proof. Since 
F 

2 n = i + e (2) 
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and 

£ Fi = Fn+2 -1 (n " X) • 
1=1 

the result easily follows., 

Theorem 7. 

i + e2n(2) = 7 T [i + 02 i_i ( 2 ) 1 < n ^ D-

Proof« The result is readily obtained from 

n 
£j F2i-1 = F2n • 1=1 

GENERALIZATION TO OTHER RECURSIVELY DEFINED SEQUENCES 

We conclude our discussion with one result in this area., 
Theorem 80 If 

1 nJ n=l 

is a recursively defined positive integer sequence satisfying the linear dif-
ference equation 

m 
(8) £ ^ u „ ^ = P (n > 1) (order m) , 

i=0 * n + 1 

and boundary conditions {ul9 u2, °®B, u m - l ) » where jS and a. for i £ ( 0 , 
1, • • • , m} are constants, and if 
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u n 
0n = 1 1 - . °1 (b) (n > 1) ; 

then 

ni a. 
(9) 0 [1 + (b - l)p ] i = b13 (n > 1) 

i=0 n + 1 

Proof, Since 
u 

n̂ = T A H T <n * x> • 

uk 
we have 

b ~ = 1 + (b - 1)/^ 

for k > 1 and the result readily follows, 
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Denoting the n term of the Fibonacci sequence 1, 1, 2, 3, 5, • • • , 
by F , where F , 0 = F , - + F , it is well known that J n9 n+2 n+1 n 

F2 - F F = ( - l ) n + 1 

n n - l n + 1 K 1 ; 

If odd prime p divides F - , then 

F2 = ( _ D n + 1 (modp) , 

so that (-1) is a quadratic residue modulo p* Clearly, for n = 2k, this 
implies -1 is a quadratic residue modulo p , and accordingly, p = 1 (mod 

[Continued on page 537* ] 


