
ADVANCED PROBLEMS AND SOLUTIONS 
Edited by 

RAYMOND E. WHITNEY 
Lock Haven State College, Lock Haven, Pennsylvania 

Send all communications concerning Advanced Problems and Solutions 
to Raymond E. Whitney, Mathematics Department Lock Haven State College, 
Lock Haven, Pennsylvania 17745, This department especially welcomes 
problems believed to be new or extending old results. Proposers should sub-
mit solutions or other information that will assist the editor. To facilitate 
their consideration, solutions should be submitted on separate signed sheets 
within two months after publication of the problems. 

H-178 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Pu t 

a 
m 

_ / m + n \ 2 

,n "" I m i 

Show that a satisfies no recurrence of the type 
m,n JS^ 

r s 
E E c. . a . , = 0 (m > r5 n > s) , 

• A i A J 9 k m - j 5 n - k j=0 k=0 J9 JS 

where the c. , and r ? s are all independent of m,n. 
Show also that a satisfies no recurrence of the type 

£ E c i k a m - i n-k = ° (m > r5 n > 0) 
j=0 k=0 J ? K m h 

where the c. , and r are independent of m,n. 
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H-179 Proposed by D. Singmaster, Bedford College, University of London, London, England. 

Let k numbers p1? p2, ••• , p, be given. Set a = 0 for n < 0; 
aQ = 1 and define a by the recursion 

n a = 52 V>a • for n > 0. n r-i i n-i i= l 

1. Find simple necessary and sufficient conditions on the p. for 

lim a n —* °° n 

to exist and be: (a) finite and nonzero; (b) zero; (c) infinite. 
2. Are the conditions: p. > 0 for i = 1, 2, • • • , p. > 0 and 

n 

i=l 

sufficient for lim a to exist, be finite, and be nonzero? n —* oo n 

H-180 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Show that 

n V M3
 = (n + k)t 

kt() W k 2ifen (kl)3(n - 2k)! < " > 

y* / n \ 3
 = y^ (n + k)I 

kt() W k " 2 lgn (k')3(n - 2k)! <2 n-3 k ) 

where F, and L, denote the k Fibonacciand Lucas numbers, respectively. 
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SOLUTIONS 

SUMMA RILY PROD UC TIVE 

H-156 Proposed by L. Carlitz, Duke University, Durham, North Carolina. 

Prove the identity 

*> n 2 n °o oo 9 oo k(k+l) . 
E q z 0 n k . ^ n^ n v " Q - k 

"75]— n (1 - q ) = 2 ^ q z 2 ^ ^ 5 z 
n=0 i q ; n k=l n=-oo k=0 i q ; 2k 

00 / ,-,\ °° (k+1)2 
V^ n(n+l) n v^- q 
L q z L 7^5— z 

ti=-oo k=0 i q ; 2 k + l 

where 

(q)n = (1 - q)( l " q2) • • • (1 - q ) 

Solution by the Proposer. 

We shall make use of the E u l e r identity 

S ( l -q\) = t (-Wn(n-X) z7(q) 
n=0 n=0 

and the Jacobi identi ty 

OO OO „ 

n ,- 2 n W l 2 n - l , W l 2 n - l - 1 , v 8 n n 

(1 - q )(1 - q z ) ( l - q z ) = 2 - Q z 

n= l n=-<» 

Now we have 
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OO „ OO 
1 ^ 

— — I!' (1 - q ) - 2 , q z II. (1 - q ) 
n=0 q k=l n=0 k=l 

oo o oo 

E n 2 n ~~ M n+k,k q z II (1 - q ) 
n=-oo k=l 

= Z A " E (-Dkq^(k+1)+nk/(q)1< 
n=-oo k=0 * 

E , -vk iMk+l) , , v v* n2, k vii 
(-1) q

z /(q)^ 2-r q (q z) 
k=0 K n=-oo 

OO 1 / v °° 

E t -vkfk(k+l) / / v 0 ,- 2nW i _, 2n+k-l Wn , 2n-k-l - L 
(-1) q̂  / (q ) t ' II (1 - q )(1 + q z)(l + q z ) 

n=0 K
 n = l 

00 °° k(2k+l) °o 
n ,- 2nv V q FT /i ^ 2n+2k-l W 1 _,_ 2 n - 2 k - l , 
11 (1 - q ) - 2L» (n\ •— II (1 + q z ) ( l + q z) 

n=l k=0 i q ; 2 k n=l 

n ,-, 2n. ^ fe+D(2k+l).« 2n+2k W l _, 2n-2k-2 - 1 , 
1 1 (i - q ) • 2-r —-T̂ i n (i + q )(i + q z ) 

n=l k=0 w 2 k + l n=l 

2 °° k 2 k + l ) ,- ^ -2k+l - 1 , ,- _, - 1 - l v v - n2 n Y» q (1 + q z )- - • (1 + q z ) 
Z-» q z z^ (n\ 2k-i " 

n=-oo k=0 W 2 k (1 + qz)- • • (1 + q^K z) 

00 , |1X °° (k+l)(2k+l) /n , -2k - lv ,.. _, -2 - 1 
E n(n+1) n v^ q (1 + q z ) • • • (1 + q z 

q z 2-r ""777* — ~ 9k 
n=-oo k=0 W 2 k + 1 (1 + q2z) . . . (1 + q z) 

f n2 n f q k ( k + 1 ) -k f n(n+l) n f q ( k + 1 ) 2 -k 
= L q z L ^T-T—z - 2^ q z- 2^ £r-—z 

n=_oo k = 0
 v q ;2k n=-oo k=0 v q ; 2k+ l 
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STAY TUNED TO THIS NETWORK 

H-157 Proposed by M. N. S. Swamy, Nova Scotia Technical College, Halifax, Canada (corrected) 

by 

A set of polynomials c (x), which appea r s in network theory is defined 

c n + 1 (x ) = (x + 2)cn(x) - cn_1(x) (n > 1) 

with 

c0(x) = 1 and cx(x) = (x + 2)/2 

(a) Find a polynomial express ion for c (x). 

(b) Show that 

2c (x) = b (x) + b Ax) = B (x) - B 0(x) nv n n - l x nv n-2 

where B (x) and b (x) a r e the Morgan-Voyce polynomials a s de-

fined in the Fibonacci Qua r t e r ly , Vol. 5 , No. 2 , p . 167. 

Sh< 

(d) If 

(c) Show that 2c2 (x) - cQ (x) = 1. n AW 

Q 
I"(x + 2) - l l [ 1 0j« 

show that 

c - c -
n n - 1 
n - 1 n-2 

= ^ ( Q n - Q n " 2 ) for (n > 2) 

Hence deduce that c x 1 c n - c2 = x(x + 4) /4 . n+i n—l n 

Solution by A. G. Law, University of Saskatchewan, Regina, Saskatchewan, Canada. 

Let {c (x)} be the family of polynomials p r e s c r i b e d by the r e c u r r e n c e 
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(*) Yn + 1 = (x + 2)yn - y n _ r n > 1 , 

with y0 = 1 and yA = 1 + x/2. It can be derived, with the aid of [1] , that 

Cn<x> = W P i " " ' 4 ) ( 1 + x / 2 ) ' " - 1 ' 

where P ' " is the n -degree Jacobi polynomial. Consequently 
[ 3 ] , c (x) = cos n#, where cos 0 = 1 + x /2 , for n > 1. 

A half-angle formula gives immediately that 2c2 - c = 1 , n > 1. 
Similarly, each relation 

c , - (x)c - (x) - c2 (x) = x(x + 4)/4 n+1 n - l v n v / v " 

is also just a trigonometric identity. 
The coupled recurrence 

b = xB 1 + b - ; B = (x + 1)B -, + b - (n > 1) , 
n n-1 n-1 n n-1 n-1 v 

where b0 = B0 = 1 shows that 

b j n = (x + 2)b - b . n+1 ' n n-1 

for n > 1. Hence, 

b ^ = (x +'l)(b + b -) - b „ ; n+1 x v n n-1 n-2 

that i s , y = (b + b - )/2 satisfies recurrence (*) and, so, J n n n-1 ' v 

(b + b - )/2 = c 
n n-1 ' n 

for n > 1. Similarly, 2c = B - B ., for n > 1. 
"• J n n n-1 

Finally, since each b (x) is a known sum (see [2]), 2c = b + b -
yields the explicit formula: 
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2 (x) = xn/2 + S 1 _ i L - / n + k - A x k 
kK) n " k \ n " k " V 

for n J> 1. 

1. D. V. Ho, J. W. Jayne and M. B. Sledd, "Recursively Generated Strum -
Liouville Polynomial Systems,M Duke Mathematical Journal, Vol. 33 
(1966), pp. 131-140. 

2. J. C. Sjoherg, Problem H-69, Fibonacci Quarterly, Vol. 5 (1967), No. 2, 
pp. 164-165. 

3. G. Szego, "Orthogonal Polynomials," American Mathematical Society 
Colloquium Publications, Vol. XXIII (1939). 

Also solved by D. Zeitlin, D. ¥. Jaiswal, M. Voder, and the Proposer. 

JN THEIR PRIME 

H-158 Proposed by M. N. S. Swamy, Nova Scotia Technical College, Halifax, Canada. 

If f (x) be the Fibonacci polynomial as defined in H-127, show that 

(a) For integral values of x, f (x) and f Ax) are prime to each 
other. 

(b) J 1 + t a/Wl^n+l^l1 - X2 £ (1/f2nf2nH-2>) = ^ 

Solution by the Proposer. 

(a) It may easily be established by induction that 

W X ) W X ) - *w = (-1)n • 
Hence, for integral values of x, f (x) and f +1(x) are prime to 
each other. 

(b) It may also be established by induction that 
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f -(x)f 0(x) - f (x)f Ax) + (-1) x = 0 n+1 n - 2 ' n n - 1 

[Feb. 

Hence , 

f 2 n + l f 2 n - l 
2n+2 

f2n+l 

2n 
f 2 n - l 

Thus , 

n 

1 f 2 n + l f 2 n - l 

2n+2 
f2n+l 

2n+2 
I 2n+l 

O r , 

(2) 1 + 
1 ^ n + l ^ n - l 

1 f2n+2 
f, 2n 

Also , from (1), we have 

f, 
f f 2n 2n+2 

2n+l 
f2n+2 

2n+l 
I 2n 

Hence , 

n 
f f 

1 V 2 n + 2 

2n+l 
f2n+2 

v f 4. f 
2n+2 2n+l 

f2n+2 5 
2n+l 

f2n+2 

x2 + 1 
+ x = 

2n+l 
f2n+2 

1 
x 
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Thus , 

(3) 1 - x* £ r-f— = x ^ 
1 2n 2n+2 2n+2 

Hence from (2) and (3), we have 

|1+ 2 r-T— H1-x2tF-I
3—j= i 

( 1 ^ n + l l n - l ) ( 1 I2nI2n+2J 

Also solved by A. Shannon, M. Yoder, and D. V. Jaiswal. 

HARMONY 

H-159 Proposed by Clyde Bridger, Springfield College, Springfield, Illinois. 

L e t 

D, - C " d 

"k c - d 

and 

E k = c + d , 

where c and d a r e the roo ts of z2 = az + b. Consider the four number s e , 
k k 

f, x , y , where e = c and f = d a r e the roots of 

z2 - z E k + (-b)k = 0 , 

and y is the harmonic conjugate of x with r e spec t to e and f. Find y 

when 
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nk+k ,. t m 
x = - ^ (k f 0) . 

nk 

Solution by the Proposer. 

The condition to be m e t i s 

x - e y - f = ± 
x - f y - e 

(See page 69, R. M. Winger , Pro jec t ive Geomet ry , Heath, 1923.) This 

l eads d i rec t ly to 

2xy - E k (x + y) + 2 ( -b ) k = 0 . 

F o r the given value of x , 

E, D , x l - 2 ( -b ) k D . k nk+k N nk 
y 2 D , , - E. D . 

nk+k k nk 

It i s easy to verify from the definitions of D, and E, that the numera to r 

r educes to E . ^ D , and that the denominator reduces to E , D, . Hence, 

E nk+k 
nk 

Note that when a = b = 1, and k = 1, 

F n + 1 A
 L n + 1 

-— and IT-
n n 

a r e harmonic conjugates with r e spec t to the roo t s of z2 = z + 1. 

Also solved by M. Yoder. 
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DISCRIMINATING 

H-160 Proposed by D. and £ Lehmer, University of California, Berkeley, California. 

Find the roots and the discriminant of 

x3 - (-l)k3x - L 3 k = 0 . 

Solution by L Carlitz, Duke University, Durham, North Carolina. 

Somewhat more gene rally, we may consider the equation 

(*) x3 - 3(a(3)kx - (a3k + £ 3 k ) = 0 , 

where a,/3 are arbitrary. This equation evidently reduces to 

x3 - 3(-l)kx - L 3 k = 0 , 

where a, (3 are the roots of 

z2 _ z _ i = o . 

Let a), co2 denote the complex cube roots of 1 and put 

Xi = a + ft , x2 = o)0! + & fi , x 3 = (x) a + <tifs . 

Then it is easily verified that xl9 x2s x3 are the roots of (*). 
By the familiar formula for the discriminant of a cubic, or directly by 

computing (xj,- x2 )2(x2 - x3 )2
? we find that the discriminant is given by 

D = -27( . 3 k - £ 3 k ) 2 . 

For the special case 

x3 - 3(-l)kx - L 3 k = 0 , 

the roots are xt = L, and x2? x3? where 
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X2 + X3 = ~Lk' X2X3 = L2k - ( " 1 ) k ' 

[Feb. 

The discriminant reduces to 

- 1 3 5 F 3 k • 

Also solved by M. Yoder, D. Zeitlin, B. King, A. Shannon, and the Proposers. 

BE NEGATIVE 

H-162 Proposed by David A. Klarner, University of Alberta, Edmonton, Alberta, Canada. 

Suppose a.. > 1 for i , j = 1, 2, 
such that 

Show there exists an x > 1 

(-D1 

a l l " X a12 

"21 

n l 

a22 " X 

n2 

*ln 

*2n 

a - x nn 

< 0 

for all n. 

Solution by C. B. A. Peck, Ordnance Research Laboratory, State College, Pennsylvania. 

Let D(n) be the determinant. 

D(l) = ( - l ) 1 ^ ! - x | = x - a i l < 0 

if x < a1:l. Since x, aljL > 1, any x satisfying a41 > x > 1 will do. Sup-
pose aA1 = 1; then x = 1 is the only answer for n = 1. The statement r e -
quires an x for all n. Can we reach a contradiction in the case an = 1? 
While 

D(2) = -a12a21 < -1 < 0 , 
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D(3) = -
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~ a 2 i a 33 — a 2 i " a23a3i ~ a13a21a32 

+ a13a22a31 - a13a31 . 

73 

0 

a21 

a31 

a12 

a22 -

a32 

- 1 

a i 3 

a23 

a33 

Each term here has the sign preceding it, as all factors are positive. Given 
a... with i f j , we can take a22 and/or a33 so large that the positive terms 
dominate, since these factors occur only in positive terms. Thus we reach 
a contradiction of the inequality for n = 3, a t l = 1. 

[Continued from page 60. ] 
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