ADVANCED PROBLEMS AND SOLUTIONS

Edited by
RAYMOND E. WHITNEY
Lock Haven State College, Lock Haven, PennsyIvania

Send all communications concerning Advanced Problems and Solutions to Raymond E. Whitney, Mathematics Department, Lock Haven State College, Lock Haven, Pennsylvania 17745. This department especially welcomes problems believed to be new or extending old results. Proposers should submit solutions or other information that will assist the editor. To facilitate their consideration, solutions should be submitted on separate signed sheets within two months after publication of the problems.

H-178 Proposed by L. Carlitz, Duke University, Durham, North Carolina.
Put

$$
a_{m, n}=\binom{m+n}{m}^{2}
$$

Show that $a_{m, n}$ satisfies no recurrence of the type

$$
\sum_{j=0}^{r} \sum_{k=0}^{s} c_{j, k} a_{m-j, n-k}=0 \quad(m \geq r, n \geq s)
$$

where the $c_{j, k}$ and r, s are all independent of m, n.
Show also that $a_{m, n}$ satisfies no recurrence of the type

$$
\sum_{j=0}^{r} \sum_{k=0}^{n} c_{j, k} a_{m-j, n-k}=0 \quad(m \geq r, n \geq 0)
$$

where the $c_{j, k}$ and r are independent of m, n.

H-179 Proposed by D. Singmaster, Bedford College, University of London, London, England.

Let k numbers $\mathrm{p}_{1}, \mathrm{p}_{2}, \cdots, \mathrm{p}_{\mathrm{k}}$ be given. Set $\alpha_{\mathrm{n}}=0$ for $\mathrm{n}<0$; $\alpha_{0}=1$ and define α_{n} by the recursion

$$
\alpha_{n}=\sum_{i=1}^{n} p_{i} \alpha_{n-i} \quad \text { for } n>0
$$

1. Find simple necessary and sufficient conditions on the p_{i} for

$$
\lim _{\mathrm{n} \rightarrow \infty} \alpha_{\mathrm{n}}
$$

to exist and be: (a) finite and nonzero; (b) zero; (c) infinite.
2. Are the conditions: $p_{i} \geq 0$ for $i=1,2, \cdots, p_{i}>0$ and

$$
\sum_{i=1}^{n} p_{i}=1
$$

sufficient for $\lim _{\mathrm{n}}{ }^{\infty} \alpha_{\mathrm{n}}$ to exist, be finite, and be nonzero?
H-180 Proposed by L. Carlitz, Duke University, Durham, North Carolina.
Show that

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n}{k}^{3} F_{k}=\sum_{2 k \leq n} \frac{(n+k)!}{(k!)^{3}(n-2 k)!} F_{(2 n-3 k)} \\
& \sum_{k=0}^{n}\binom{n}{k}^{3} L_{k}=\sum_{2 k \leq n} \frac{(n+k)!}{(k!)^{3}(n-2 k)!} L_{(2 n-3 k)}
\end{aligned}
$$

where F_{k} and L_{k} denote the $\mathrm{k}^{\text {th }}$ Fibonacciand Lucas numbers, respectively.

H-156 Proposed by L. Carlitz, Duke University, Durham, North Carolina.

Prove the identity

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{q^{n^{2}} z^{n}}{(q)_{n}} \prod_{k=1}^{\infty}\left(1-q^{k}\right)= \sum_{n=-\infty}^{\infty} q^{n^{2}} z^{n} \sum_{k=0}^{\infty} \frac{q^{k(k+1)}}{(q)} 2 k \\
& z^{-k} \\
&-\sum_{n=-\infty}^{\infty} q^{n(n+1)} z^{n} \sum_{k=0}^{\infty} \frac{q^{(k+1)^{2}} \frac{(q)}{(q k+1} z^{-k}}{}
\end{aligned}
$$

where

$$
(q)_{n}=(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)
$$

Solution by the Proposer.

We shall make use of the Euler identity

$$
\prod_{n=0}^{\infty}\left(1-q^{n} z\right)=\sum_{n=0}^{\infty}(-1)^{n} q^{\frac{1}{2}} n(n-1) z^{n} /(q)_{n}
$$

and the Jacobi identity

$$
\prod_{n=1}^{\infty}\left(1-q^{2 n}\right)\left(1-q^{2 n-1} z\right)\left(1-q^{2 n-1} z^{-1}\right)=\sum_{n=-\infty}^{\infty} q^{n^{2}} z^{n}
$$

Now we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{q^{n^{2}} z^{n}}{q^{n}} \prod_{k=1}^{\infty}\left(1-q^{k}\right)=\sum_{n=0}^{\infty} q^{n^{2}} z^{n} \prod_{k=1}^{\infty}\left(1-q^{n+k}\right) \\
& =\sum_{n=-\infty}^{\infty} q^{n^{2}} z^{n} \prod_{k=1}^{\infty}\left(1-q^{n+k}\right) \\
& =\sum_{n=-\infty}^{\infty} q^{n^{2}} z^{n} \sum_{k=0}^{\infty}(-1)^{k} q^{\frac{1}{2} k(k+1)+n k} /(q)_{k} \\
& =\sum_{k=0}^{\infty}(-1)^{k} q^{\frac{1}{2} k(k+1)} /(q){ }_{k} \sum_{n=-\infty}^{\infty} q^{n^{2}}\left(q^{k} z\right)^{n} \\
& =\sum_{n=0}^{\infty}(-1)^{k} q^{\frac{1}{2} k(k+1)} /(q) k \cdot \prod_{n=1}^{\infty}\left(1-q^{2 n}\right)\left(1+q^{2 n+k-1} z\right)\left(1+q^{2 n-k-1} z^{-1}\right) \\
& =\prod_{n=1}^{\infty}\left(1-q^{2 n}\right) \cdot \sum_{k=0}^{\infty} \frac{q^{k(2 k+1)}}{(q)} \prod_{n=1}^{\infty}\left(1+q^{2 n+2 k-1} z\right)\left(1+q^{2 n-2 k-1} z\right) \\
& -\prod_{n=1}^{\infty}\left(1-q^{2 n}\right) \cdot \sum_{k=0}^{\infty} \frac{q^{(k+1)(2 k+1)}}{(q)} \prod_{n=1}^{\infty}\left(1+q^{2 n+2 k}\right)\left(1+q^{2 n-2 k-2} z^{-1}\right) \\
& =\sum_{n=-\infty}^{\infty} q^{n^{2}} z^{n} \sum_{k=0}^{\infty} \frac{q^{k(2 k+1)}}{(q)_{2 k}} \cdot \frac{\left(1+q^{-2 k+1} z^{-1}\right) \cdots\left(1+q^{-1} z^{-1}\right)}{(1+q z) \cdots\left(1+q^{2 k-1} z\right)} \\
& -\sum_{n=-\infty}^{\infty} q^{n(n+1)} z^{n} \sum_{k=0}^{\infty} \frac{q^{(k+1)(2 k+1)}}{(q)} 2 k+1 \quad \frac{\left(1+q^{-2 k} z^{-1}\right) \cdots\left(1+q^{-2} z^{-1}\right)}{\left(1+q^{2} z\right) \cdots\left(1+q^{2 k} z\right)} \\
& =\sum_{n=-\infty}^{\infty} q^{n^{2}} z^{n} \sum_{k=0}^{\infty} \frac{q^{k(k+1)}}{(q)} 2 k \text { } z^{-k}-\sum_{n=-\infty}^{\infty} q^{n(n+1)} z^{n} \sum_{k=0}^{\infty} \frac{q^{(k+1)^{2}}}{(q)} 2 k+1-
\end{aligned}
$$

H-157 Proposed by M. N. S. Swamy, Nova Scotia Technical College, Halifax, Canada (corrected)

A set of polynomials $c_{n}(x)$, which appears in network theory is defined by

$$
c_{n+1}(x)=(x+2) c_{n}(x)-c_{n-1}(x) \quad(n \geq 1)
$$

with

$$
c_{0}(x)=1 \text { and } c_{1}(x)=(x+2) / 2
$$

(a) Find a polynomial expression for $\mathrm{c}_{\mathrm{n}}(\mathrm{x})$.
(b) Show that

$$
2 c_{n}(x)=b_{n}(x)+b_{n-1}(x)=B_{n}(x)-B_{n-2}(x)
$$

where $B_{n}(x)$ and $b_{n}(x)$ are the Morgan-Voyce polynomials as defined in the Fibonacci Quarterly, Vol. 5, No. 2, p. 167.
(c) Show that $2 \mathrm{c}_{\mathrm{n}}^{2}(\mathrm{x})-\mathrm{c}_{2 \mathrm{n}}(\mathrm{x})=1$.
(d) If

$$
\mathrm{Q}=\left[\begin{array}{cr}
(x+2) & -1 \\
1 & 0
\end{array}\right]
$$

show that

$$
\left[\begin{array}{ll}
c_{n} & -c_{n-1} \\
c_{n-1} & -c_{n-2}
\end{array}\right]=\frac{1}{2}\left(Q^{n}-Q^{n-2}\right) \text { for }(n \geq 2)
$$

Hence deduce that $c_{n+1} c_{n-1}-c_{n}^{2}=x(x+4) / 4$.
Solution by A. G. Law, University of Saskatchewan, Regina, Saskatchewan, Canada.

Let $\left\{\mathrm{c}_{\mathrm{n}}(\mathrm{x})\right\}$ be the family of polynomials prescribed by the recurrence

$$
\begin{equation*}
\mathrm{y}_{\mathrm{n}+1}=(\mathrm{x}+2) \mathrm{y}_{\mathrm{n}}-\mathrm{y}_{\mathrm{n}-1}, \quad \mathrm{n} \geq 1, \tag{*}
\end{equation*}
$$

with $y_{0}=1$ and $y_{1}=1+x / 2$. It can be derived, with the aid of [1], that

$$
c_{n}(x)=\frac{4^{n}(n!)^{2}}{(2 n)!} P_{n}^{\left(-\frac{1}{2},-\frac{1}{2}\right)}(1+x / 2), \quad n \geq 1
$$

where $P_{n}^{(-1 / 2,-1 / 2)}$ is the $n^{\text {th }}$-degree Jacobi polynomial. Consequently [3], $\mathrm{c}_{\mathrm{n}}(\mathrm{x})=\cos \mathrm{n} \theta$, where $\cos \theta=1+\mathrm{x} / 2$, for $\mathrm{n} \geq 1$.

A half-angle formula gives immediately that $2 \mathrm{c}_{\mathrm{n}}^{2}-\mathrm{c}_{2 \mathrm{n}} \equiv 1, \mathrm{n} \geq 1$. Similarly, each relation

$$
c_{n+1}(x) c_{n-1}(x)-c_{n}^{2}(x)=x(x+4) / 4
$$

is also just a trigonometric identity.
The coupled recurrence

$$
b_{n}=x B_{n-1}+b_{n-1} ; \quad B_{n}=(x+1) B_{n-1}+b_{n-1} \quad(n \geq 1),
$$

where $\mathrm{b}_{0} \equiv \mathrm{~B}_{0} \equiv 1$ shows that

$$
b_{n+1}=(x+2) b_{n}-b_{n-1}
$$

for $\mathrm{n} \geq 1$. Hence,

$$
b_{n+1}=(x+1)\left(b_{n}+b_{n-1}\right)-b_{n-2} ;
$$

that is, $y_{n}=\left(b_{n}+b_{n-1}\right) / 2$ satisfies recurrence (*) and, so,

$$
\left(b_{n}+b_{n-1}\right) / 2 \equiv c_{n}
$$

for $\mathrm{n} \geq 1$. Similarly, $2 \mathrm{c}_{\mathrm{n}} \equiv \mathrm{B}_{\mathrm{n}}-\mathrm{B}_{\mathrm{n}-1}$ for $\mathrm{n} \geq 1$.
Finally, since each $\mathrm{b}_{\mathrm{n}}(\mathrm{x})$ is a known sum (see [2]), $2 \mathrm{c}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}+\mathrm{b}_{\mathrm{n}-1}$ yields the explicit formula:

$$
c_{n}(x)=x^{n} / 2+\sum_{k=0}^{n-1} \frac{n}{n-k}\binom{n+k-1}{n-k-1} x^{k}
$$

for $\mathrm{n} \geq 1$.

1. D. V. Ho, J. W. Jayne and M. B. Sledd, "Recursively Generated StrumLiouville Polynomial Systems," Duke Mathematical Journal, Vol. 33 (1966), pp. 131-140.
2. J. C. Sjoherg, Problem H-69, Fibonacci Quarterly, Vol. 5 (1967), No. 2, pp. 164-165.
3. G. Szego, "Orthogonal Polynomials," American Mathematical Society Colloquium Publications, Vol. XXIII (1939).

Also solved by D. Zeitlin, D. V. Jaiswal, M. Yoder, and the Proposer.

IN THEIR PRIME

H-158 Proposed by M. N. S. Swamy, Nova Scotia Technical College, Halifax, Canada.

If $f_{n}(x)$ be the Fibonacci polynomial as defined in $H-127$, show that
(a) For integral values of $x, f_{n}(x)$ and $f_{n+1}(x)$ are prime to each other.
(b) $\quad\left\{1+\sum_{1}^{n}\left(1 / \mathrm{f}_{2 \mathrm{n}-1} \mathrm{~F}_{2 \mathrm{n}+1}\right)\right\}\left\{1-\mathrm{x}^{2} \sum_{1}^{\mathrm{n}}\left(1 / \mathrm{f}_{2 \mathrm{n}} \mathrm{f}_{2 \mathrm{n}+2}\right)\right\}=1$.

Solution by the Proposer.
(a) It may easily be established by induction that

$$
\mathrm{f}_{\mathrm{n}+1}(\mathrm{x}) \mathrm{f}_{\mathrm{n}-1}(\mathrm{x})-\mathrm{f}_{\mathrm{n}}^{2}(\mathrm{x})=(-1)^{\mathrm{n}}
$$

Hence, for integral values of $x, f_{n}(x)$ and $f_{n+1}(x)$ are prime to each other.
(b) It may also be established by induction that

$$
f_{n+1}(x) f_{n-2}(x)-f_{n}(x) f_{n-1}(x)+(-1)^{n} x=0
$$

Hence,

$$
x \frac{1}{f_{2 n+1} f_{2 n-1}}=\frac{f_{2 n+2}}{f_{2 n+1}}-\frac{f_{2 n}}{f_{2 n-1}}
$$

Thus,

$$
x \sum_{1}^{n} \frac{1}{f_{2 n+1} f_{2 n-1}}=\frac{f_{2 n+2}}{f_{2 n+1}}-\frac{f_{2}}{f_{1}}=\frac{f_{2 n+2}}{f_{2 n+1}}-x
$$

Or,
(2)

$$
1+\sum_{1}^{n} \frac{1}{f_{2 n+1} f_{2 n-1}}=\frac{1}{x} \frac{f_{2 n+2}}{f_{2 n}}
$$

Also, from (1), we have

$$
-x \frac{1}{f_{2 n} f_{2 n+2}}=\frac{f_{2 n+1}}{f_{2 n+2}}-\frac{f_{2 n+1}}{f_{2 n}}
$$

Hence,

$$
\begin{aligned}
-x \sum_{1}^{n} \frac{1}{f_{2 n} f_{2 n+2}} & =\frac{f_{2 n+1}}{f_{2 n+2}}-\frac{f_{3}}{f_{2}} \\
& =\frac{x_{2 n+2}+f_{2 n+1}}{f_{2 n+2}}-\frac{f_{3}}{f_{2}} \\
& =\frac{f_{2 n+1}}{f_{2 n+2}}-\frac{x^{2}+1}{x}+x=\frac{f_{2 n+1}}{f_{2 n+2}}-\frac{1}{x}
\end{aligned}
$$

Thus,

$$
\begin{equation*}
1-x^{2} \sum_{1}^{n} \frac{1}{f_{2 n} f_{2 n+2}}=x \frac{f_{2 n+1}}{f_{2 n+2}} \tag{3}
\end{equation*}
$$

Hence from (2) and (3), we have

$$
\left\{1+\sum_{1}^{n} \frac{1}{f_{2 n+1} f_{2 n-1}}\right\}\left\{1-x^{2} \sum_{1}^{n} \frac{1}{f_{2 n} f_{2 n+2}}\right\}=1 .
$$

Also solved by A. Shannon, M. Yoder, and D. V. Jaiswal.

HARMONY

H-159 Proposed by Clyde Bridger, Springfield College, Springfield, Illinois.
Let

$$
D_{k}=\frac{c^{k}-d^{k}}{c-d}
$$

and

$$
\mathrm{E}_{\mathrm{k}}=\mathrm{c}^{\mathrm{k}}+\mathrm{d}^{\mathrm{k}}
$$

where c and d are the roots of $z^{2}=a z+b$. Consider the four numbers e, f, x, y, where $e=c^{k}$ and $f=d^{k}$ are the roots of

$$
z^{2}-z E_{k}+(-b)^{k}=0
$$

and y is the harmonic conjugate of x with respect to e and f . Find y when

$$
\mathrm{x}=\frac{\mathrm{D}_{\mathrm{nk}+\mathrm{k}}}{\mathrm{D}_{\mathrm{nk}}} \quad(\mathrm{k} \neq 0)
$$

Solution by the Proposer.
The condition to be met is

$$
\frac{x-e}{x-f} \cdot \frac{y-f}{y-e}=-1
$$

(See page 69, R. M. Winger, Projective Geometry, Heath, 1923.) This leads directly to

$$
2 x y-E_{k}(x+y)+2(-b)^{k}=0
$$

For the given value of x,

$$
y=\frac{E_{k} D_{n k+k}-2(-b)^{k} D_{n k}}{2 D_{n k+k}-E_{k} D_{n k}}
$$

It is easy to verify from the definitions of D_{k} and E_{k} that the numerator reduces to $E_{n k+k} D_{k}$ and that the denominator reduces to $E_{n k} D_{k}$. Hence,

$$
\mathrm{y}=\frac{\mathrm{E}_{\mathrm{nk}+\mathrm{k}}}{\mathrm{E}_{\mathrm{nk}}}
$$

Note that when $\mathrm{a}=\mathrm{b}=1$, and $\mathrm{k}=1$,

$$
\frac{\mathrm{F}_{\mathrm{n}+1}}{\mathrm{~F}_{\mathrm{n}}} \quad \text { and } \quad \frac{\mathrm{L}_{\mathrm{n}+1}}{\mathrm{~L}_{\mathrm{n}}}
$$

are harmonic conjugates with respect to the roots of $z^{2}=z+1$.

Find the roots and the discriminant of

$$
x^{3}-(-1)^{k_{3}} 3-L_{3 k}=0
$$

Solution by L. Carlitz, Duke University, Durham, North Carolina.
Somewhat more generally, we may consider the equation

$$
\begin{equation*}
\mathrm{x}^{3}-3(\alpha \beta)^{\mathrm{k}} \mathrm{x}-\left(\alpha^{3 \mathrm{k}}+\beta^{3 \mathrm{k}}\right)=0 \tag{*}
\end{equation*}
$$

where α, β are arbitrary. This equation evidently reduces to

$$
x^{3}-3(-1)^{k} x-L_{3 k}=0
$$

where α, β are the roots of

$$
z^{2}-z-1=0
$$

Let ω, ω^{2} denote the complex cube roots of 1 and put

$$
\mathrm{x}_{1}=\alpha^{\mathrm{k}}+\beta^{\mathrm{k}}, \quad \mathrm{x}_{2}=\omega \alpha^{\mathrm{k}}+\omega^{2} \beta^{\mathrm{k}}, \quad \mathrm{x}_{3}=\omega^{2} \alpha^{\mathrm{k}}+\omega \beta^{\mathrm{k}}
$$

Then it is easily verified that x_{1}, x_{2}, x_{3} are the roots of $(*)$.
By the familiar formula for the discriminant of a cubic, or directly by computing $\left(x_{1},-x_{2}\right)^{2}\left(x_{2}-x_{3}\right)^{2}$, we find that the discriminant is given by

$$
\mathrm{D}=-27\left(\alpha^{3 \mathrm{k}}-\beta^{3 \mathrm{k}}\right)^{2}
$$

For the special case

$$
x^{3}-3(-1)^{k} x-L_{3 k}=0
$$

the roots are $\mathrm{x}_{1}=\mathrm{L}_{\mathrm{k}}$ and $\mathrm{x}_{2}, \mathrm{x}_{3}$, where

$$
\mathrm{x}_{2}+\mathrm{x}_{3}=-\mathrm{L}_{\mathrm{k}}, \quad \mathrm{x}_{2} \mathrm{x}_{3}=\mathrm{L}_{2 \mathrm{k}}-(-1)^{\mathrm{k}}
$$

The discriminant reduces to

$$
-135 \mathrm{~F}_{3 \mathrm{k}}^{2}
$$

Also solved by M. Yoder, D. Zeitlin, B. King, A. Shannon, and the Proposers.

BE NEGATIVE

H-162 Proposed by David A. Klarner, University of Alberta, Edmonton, Alberta, Canada.

Suppose $a_{i j} \geq 1$ for $i, j=1,2, \cdots$. Show there exists an $x \geq 1$ such that

$$
(-1)^{n}\left|\begin{array}{llll}
a_{11}-x & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22}-x^{2} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}-x
\end{array}\right| \leq 0
$$

for all n .

Solution by C. B. A. Peck, Ordnance Research Laboratory, State College, Pennsy/vania.
Let $\mathrm{D}(\mathrm{n})$ be the determinant.

$$
D(1)=(-1)^{1}\left|a_{11}-x\right|=x-a_{11} \leq 0
$$

if $\mathrm{x} \leq \mathrm{a}_{11}$. Since $\mathrm{x}, \mathrm{a}_{11} \geq 1$, any x satisfying $\mathrm{a}_{11} \geq \mathrm{x} \geq 1$ will do. Suppose $\mathrm{a}_{11}=1$; then $\mathrm{x}=1$ is the only answer for $\mathrm{n}=1$. The statement requires an x for all n. Can we reach a contradiction in the case $a_{11}=1$? While

$$
\mathrm{D}(2)=-\mathrm{a}_{12} \mathrm{a}_{21} \leq-1<0,
$$

$D(3)=-\left|\begin{array}{lll}0 & a_{12} & a_{13} \\ a_{21} & a_{22}-1 & a_{23} \\ a_{31} & a_{32} & a_{33}-1\end{array}\right| \xlongequal{2 a_{23}-a_{21}-a_{23} a_{31}-a_{13} a_{21} a_{32}} \begin{array}{r} \\ +a_{13} a_{22} a_{31}-a_{13} a_{31} .\end{array}$

Each term here has the sign preceding it, as all factors are positive. Given $a_{i j}$ with $i \neq j$, we can take a_{22} and/or a_{33} so large that the positive terms dominate, since these factors occur only in positive terms. Thus we reach a contradiction of the inequality for $n=3, a_{11}=1$.
[Continued from page 60.]

REFERENCES

1. Roseanna F. Torretto and J. Allen Fuchs, "Generalized Binomial Coefficients," Fibonacci Quarterly, Vol. 2, No. 4 (Dec. 1964), pp. 296302.
2. Dov Jarden, Recurring Sequences, Published by Riveon Lematimatika, Jerusalem (Israel), 1958.
3. Klaus Günther Recke, Elementary Problem B-153, Fibonacci Quarterly, Vol. 6, No. 6 (Dec. 1968), p. 401.
4. Phil Mana, Elementary Problem B-152, Fibonacci Quarterly, Vol. 6, No. 6 (Dec. 1968), and Elementary Problems B-176 and B-177, Fibonacci Quarterly, Vol. 7, No. 5 (Dec. 1969).
5. J. Worpitzky, "Studien über die Bernoullischen und Eulerschen Zahlen," J. Reine Angew. Math., Vol. 94 (1883), pp. 202-232.
6. G. Frobenius, "Ǘber die Bernoullishen Zahlen und die Eulerschen Polynome, " Preuss. Akad. Wiss., Sitzungen (1910), pp. 809-847.
7. L. Carlitz, "q-Bernoulli and Eulerian Numbers," Trans. of the A. M. S. , Vol. 76 (1954), pp. 22)-350.

