ON ITERATIVE FIBONACCI SUBSCRIPTS

JAMES E. DESMOND

Florida State University, Tallahassee, Florida

The Fibonacci sequence is defined by the recurrence relation $\mathrm{F}_{\mathrm{n}}+$ $F_{n+1}=F_{n+2}$ and the initial values $F_{1}=F_{2}=1$.

The main result of this paper is
Theorem 4. For positive integers a, k, m and n such that $k \geq m$,

The proof of Theorem 4 will depend on all results preceding it in this paper.

Let N be the set of natural numbers.
Definition 1. For any a, b in N the symbol $f_{n}(a, b)$ is defined for each n in N as follows:

$$
\begin{gather*}
\mathrm{f}_{1}(\mathrm{a}, \mathrm{~b})=\mathrm{F}_{\mathrm{ab}} \\
\mathrm{f}_{\mathrm{n}+1}(\mathrm{a}, \mathrm{~b})=\mathrm{f}_{1}\left(\mathrm{a}, \mathrm{f}_{\mathrm{n}}(\mathrm{a}, \mathrm{~b})\right)
\end{gather*}
$$

By induction, we observe that

$$
\mathrm{f}_{\mathrm{n}}(\mathrm{a}, \mathrm{~b})=\mathrm{F}_{\mathrm{aF}}
$$

Definition 2. For any a in N the symbol $f_{n}(a)$ is defined for each n in N as follows:
ii)

$$
\begin{gather*}
f_{1}(a)=F \\
f_{n+1}(a)=f_{1}\left(a, f_{n}(a)\right)
\end{gather*}
$$

By induction, we observe that $f_{n}(a)=f_{n}(a, 1)$.
If a, b are in N, we write $a \mid b$ if and only if there exists some c in N such that $b=a c$.

In the sequel we shall let a, b and c denote arbitrary elements of N.
Lemma 1. If $b \mid c$, then $f_{1}(a, b) \mid f_{1}(a, c)$ for all a in N.
Proof. If $b \mid c$, then $a b \mid a c$ for all a in N. From Hardy and Wright [1, p. 148] we have, if $n>0$, then $F_{n} \mid F_{r n}$ for every $r>0$. So in the present notation $f_{1}(a, b)=F_{a b} \mid F_{a c}=f_{1}(a, c)$ for all a in N.

Lemma 2. If $b \mid f_{1}(a, c)$, then $b f_{1}(a, c) \mid f_{1}(a, b c)$.
Proof. From Vinson [2] we have in the present notation,

$$
F_{a c b}=\sum_{j=1}^{b}\binom{b}{j} F_{a c}^{j} F_{a c-1}^{b-j} F_{j}
$$

For $\mathrm{j}=1$, we have

$$
\mathrm{bF}_{\mathrm{ac}} \left\lvert\,\binom{\mathrm{b}}{1} \mathrm{~F}_{\mathrm{ac} \mathrm{~F}_{\mathrm{ac}-1}^{\mathrm{b}-1} \mathrm{~F}_{1} .}\right.
$$

For $j>1$, we have, since $b \mid f_{1}(a, c)=F a c$, that

$$
\mathrm{bF}_{a c}\left|F_{a c}^{2}\right| \sum_{j=2}^{b}\binom{b}{j} F_{a c}^{j} F_{a c-1}^{b-j} F_{j}
$$

Thus $\mathrm{bf}_{1}(\mathrm{a}, \mathrm{c})=\mathrm{bF} \mathrm{ac} \mid \mathrm{F}_{\mathrm{acb}}=\mathrm{f}_{1}(\mathrm{a}, \mathrm{bc})$.
Corollary 1. If $b \mid f_{n+1}(a)$, then $b f_{n+1}(a) \mid f_{1}\left(a, b f_{n}(a)\right)$.
Corollary 2. If $b \mid f_{1}(a)$, then $\mathrm{bf}_{1}(a) \mid f_{1}(a, b)$.
Theorem 1. If $b \mid c$, then $f_{n}(a, b) \mid f_{n}(a, c)$.
Proof. We use induction on n. The case $n=1$ is true by Lemma 1, Suppose $f_{q}(a, b) \mid f_{q}(a, c)$. Then by Lemma 1 and Definition 1 ,

$$
f_{1}\left(a, f_{q}(a, b)\right)=f_{q+1}(a, b) \mid f_{q+1}(a, c)=f_{1}\left(a, f_{q}(a, c)\right)
$$

Corollary 3. $f_{n}(a) \mid f_{n}(a, c)$.
Theorem 2. $f_{m}\left(a, f_{n}(a, b)\right)=f_{m+n}(a, b)$.
Proof. We use induction on m . The case $\mathrm{m}=1$ is true by Definition 1. Suppose $f_{q}\left(a, f_{n}(a, b)\right)=f_{q+n}(a, b)$. Then by Definition 1 ,

$$
\mathrm{f}_{\mathrm{q}+1}\left(\mathrm{a}, \mathrm{f}_{\mathrm{n}}(\mathrm{a}, \mathrm{~b})\right)=\mathrm{f}_{1}\left(\mathrm{a}, \mathrm{f}_{\mathrm{q}}\left(\mathrm{a}, \mathrm{f}_{\mathrm{n}}(\mathrm{a}, \mathrm{~b})\right)\right)=\mathrm{f}_{1}\left(\mathrm{a}, \mathrm{f}_{\mathrm{q}+\mathrm{n}}(\mathrm{a}, \mathrm{~b})\right)=\mathrm{f}_{\mathrm{q}+1+\mathrm{n}}(\mathrm{a}, \mathrm{~b})
$$

Corollary 4: $\mathrm{f}_{\mathrm{m}}\left(\mathrm{a}, \mathrm{f}_{\mathrm{n}}(\mathrm{a})\right)=\mathrm{f}_{\mathrm{m}+\mathrm{n}}(\mathrm{a})$.
Lemma 3. $f_{n}(a) f_{m+n}(a)$ for $m \geq 0$.
Proof. The case $m=0$ is clear. Suppose $m>0$. Then by corollaries 3 and 4,

$$
\mathrm{f}_{\mathrm{n}}(\mathrm{a}) \mid \mathrm{f}_{\mathrm{n}}\left(\mathrm{a}, \mathrm{f}_{\mathrm{m}}(\mathrm{a})\right)=\mathrm{f}_{\mathrm{m}+\mathrm{n}}(\mathrm{a}) .
$$

Lemma 4. $f_{n}(a) f_{n}(a) \mid f_{2 n}(a)$.
Proof. We use induction on n. By corollary 2 and definition 2, $f_{1}(a) \mid f_{1}(a)$ implies

$$
\mathrm{f}_{1}(\mathrm{a}) \mathrm{f}_{1}(\mathrm{a}) \mid \mathrm{f}_{1}\left(\mathrm{a}, \mathrm{f}_{1}(\mathrm{a})\right)=\mathrm{f}_{2}(\mathrm{a})
$$

so the case $n=1$ is true. Suppose $f_{q}(a) f_{q}(a) \mid f_{2 q}(a)$. Then by Lemma 1,

$$
f_{1}\left(a, f_{q}(a) f_{q}(a)\right) \mid f_{1}\left(a, f_{2 q}(a)\right)=f_{2 q+1}(a)
$$

and by Lemma 1 again,

$$
\begin{equation*}
\mathrm{f}_{1}\left(\mathrm{a}, \mathrm{f}_{1}\left(\mathrm{a}, \mathrm{f}_{\mathrm{q}}(\mathrm{a}) \mathrm{f}_{\mathrm{q}}(\mathrm{a})\right)\right) \mid \mathrm{f}_{1}\left(\mathrm{a}, \mathrm{f}_{2 \mathrm{q}+1}(\mathrm{a})\right)=\mathrm{f}_{2(\mathrm{q}+1)}(\mathrm{a}) \tag{1}
\end{equation*}
$$

Since $f_{q+1}(a) \mid f_{q+1}(a)$ we have, by Corollary 1 ,

$$
\begin{equation*}
f_{q+1}(a) f_{q+1}(a) \mid f_{1}\left(a, f_{q+1}(a) f_{q}(a)\right) \tag{2}
\end{equation*}
$$

By Lemma 3, $f_{q}(a) \mid f_{q+1}(a)$ so by Corollary 1, $f_{q}(a) f_{q+1}(a) \mid f_{1}\left(a, f_{q}(a) f_{q}(a)\right)$. Therefore, by Lemma 1,

$$
\mathrm{f}_{1}\left(\mathrm{a}, \mathrm{f}_{\mathrm{q}}(\mathrm{a}) \mathrm{f}_{\mathrm{q}+1}(\mathrm{a})\right) \mid \mathrm{f}_{1}\left(\mathrm{a}, \mathrm{f}_{1}\left(\mathrm{a}, \mathrm{f}_{\mathrm{q}}(\mathrm{a}) \mathrm{f}_{\mathrm{q}}(\mathrm{a})\right)\right)
$$

By Equations (1) and (2), the proof is complete.
Theorem 3. $f_{m}(a) f_{n}(a) \mid f_{m+n}(a)$.
Proof. It is sufficient to prove the theorem for all $n \geq m$. Let $n=$ $\mathrm{m}+\mathrm{r}$ where $\mathrm{r} \geq 0$. We use induction on r . The case $\mathrm{r}=0$ is true by Lemma 4. Suppose $f_{m}(a) f_{m+q}(a) \mid f_{2 m+q}(a)$ for $q \geq 0$. Then, by Lemma 1 ,

$$
\begin{equation*}
\mathrm{f}_{1}\left(\mathrm{a}, \mathrm{f}_{\mathrm{m}}(\mathrm{a}) \mathrm{f}_{\mathrm{m}+\mathrm{q}}(\mathrm{a})\right) \mid \mathrm{f}_{1}\left(\mathrm{a}, \mathrm{f}_{2 \mathrm{~m}+\mathrm{q}}(\mathrm{a})\right)=\mathrm{f}_{2 \mathrm{m+q+1}}(\mathrm{a}) \tag{3}
\end{equation*}
$$

By Lemma 3, $f_{m}(a) \mid f_{m+q+1}(a)$, so by Corollary 1,

$$
f_{m}(a) f_{m+q+1}(a) \mid f_{1}\left(a, f_{m}(a) f_{m+q}(a)\right)
$$

By Equation (3), the proof is complete.
Lemma 5. $f_{m+n}(a) \mid f_{m}\left(a, f_{n}^{k}(a)\right)$ for $k>0$ 。
Proof. By Theorem 1, and Corollary 4, $f_{n}(a) \mid f_{n}^{k}(a)$ implies

$$
\mathrm{f}_{\mathrm{m}}\left(\mathrm{a}, \mathrm{f}_{\mathrm{n}}(\mathrm{a})\right)=\left.\mathrm{f}_{\mathrm{m}+\mathrm{n}}(\mathrm{a})\right|_{\mathrm{f}}\left(\mathrm{a}, \mathrm{f}_{\mathrm{n}}^{\mathrm{k}}(\mathrm{a})\right)
$$

Lemma 6. $f_{n}(a) f_{m}\left(a, f_{n}^{k}(a)\right) \mid f_{m}\left(a, f_{n}^{k+1}(a)\right)$ for $k \geq 0$.
Proof. The case $\mathrm{k}=0$ is true by Theorem 3 and Corollary 4. Suppose $\mathrm{k}>0$. We now use induction on m . By Lemmas 3 and 5,

$$
f_{n}(a) \mid f_{n+1}(a) f_{1}\left(a, f_{n}^{k}(a)\right)
$$

for $\mathrm{k}>0$. So by Lemma 2,

$$
f_{n}(a) f_{1}\left(a, f_{n}^{k}(a)\right) \mid f_{1}\left(a, f_{n}(a) f_{n}^{k}(a)\right)=f_{1}\left(a, f_{n}^{k+1}(a)\right)
$$

So the case $m=1$ is true. Suppose

$$
\mathrm{f}_{\mathrm{n}}(\mathrm{a}) \mathrm{f}_{\mathrm{q}}\left(\mathrm{a}, \mathrm{f}_{\mathrm{n}}^{\mathrm{k}}(\mathrm{a})\right) \mid \mathrm{f}_{\mathrm{q}}\left(\mathrm{a}, \mathrm{f}_{\mathrm{n}}^{\mathrm{k}+1}(\mathrm{a})\right)
$$

for $k>0$. Then by Lemma 1 ,

$$
\begin{equation*}
f_{1}\left(a, f_{n}(a) f_{q}\left(a, f_{n}^{k}(a)\right)\right) \mid f_{1}\left(a, f_{q}\left(a, f_{n}^{k+1}(a)\right)\right)=f_{q+1}\left(a, f_{n}^{k+1}(a)\right) \tag{4}
\end{equation*}
$$

by Definition 1. By Lemmas 3 and 5,

$$
f_{n}(a)\left|f_{q+1+n}(a)\right| f_{q+1}\left(a, f_{n}^{k}(a)\right)=f_{1}\left(a, f_{q}\left(a, f_{n}^{k}(a)\right)\right)
$$

for $\mathrm{k}>0$, which implies by Lemma 2 that

$$
f_{n}(a) f_{q+1}\left(a, f_{n}^{k}(a)\right) \mid f_{1}\left(a, f_{n}(a) f_{q}\left(a, f_{n}^{k}(a)\right)\right)
$$

So by Eq. (4), the proof is complete.
Lemma 7. $f_{n}^{k}(a) f_{n}\left(a, f_{n}^{k-1}(a)\right)$ for $k>0$.
Proof. We use induction on k. The case $k=1$ is clear. Suppose

$$
\mathrm{f}_{\mathrm{n}}^{\mathrm{q}}(\mathrm{a}) \mid \mathrm{f}_{\mathrm{n}}\left(\mathrm{a}, \mathrm{f}_{\mathrm{n}}^{\mathrm{q}-1}(\mathrm{a})\right)
$$

for $q>0$. Then

$$
\mathrm{f}_{\mathrm{n}}^{\mathrm{q}+1}(\mathrm{a})\left|\mathrm{f}_{\mathrm{n}}(\mathrm{a}) \mathrm{f}_{\mathrm{n}}\left(\mathrm{a}, \mathrm{f}_{\mathrm{n}}^{\mathrm{q}-1}(\mathrm{a})\right)\right| \mathrm{f}_{\mathrm{n}}\left(\mathrm{a}, \mathrm{f}_{\mathrm{n}}^{\mathrm{q}}(\mathrm{a})\right)
$$

for $q-1 \geq 0$, by Lemma 6 .
Theorem 4. $f_{n}^{k}(a) \mid f_{m n}\left(a, f_{n}^{k-m}(a)\right)$ for $k \geq m>0$.
Proof. We use induction on m . The case $\mathrm{m}=1$ is true by Lemma 7 .
Suppose

$$
\mathrm{f}_{\mathrm{n}}^{\mathrm{k}}(\mathrm{a}) \mid \mathrm{f}_{\mathrm{qn}}\left(\mathrm{a}, \mathrm{f}_{\mathrm{n}}^{\mathrm{k}-\mathrm{q}}(\mathrm{a})\right)
$$

for $k \geq q>0$. Then by Theorems 1 and 2,

$$
\begin{equation*}
f_{n}\left(a, f_{n}^{k}(a)\right) \mid f_{n}\left(a, f_{q n}\left(a, f_{n}^{k-q}(a)\right)\right)=f_{(q+1) n}\left(a, f_{n}^{k+1-(q+1)}(a)\right) \tag{5}
\end{equation*}
$$

where $k+1 \geq q+1>0$. By Lemma 7,

$$
\mathrm{f}_{\mathrm{n}}^{\mathrm{k}+1}(\mathrm{a}) \mid \mathrm{f}_{\mathrm{n}}\left(\mathrm{a}, \mathrm{f}_{\mathrm{n}}^{\mathrm{k}}(\mathrm{a})\right)
$$

for $k+1>0$. Therefore, by Eq. (5),
for $k+1 \geq q+1>0$, and the proof is complete.

ACKNOWLEDGEMENT

The author wishes to thank Dr. J. Snover and Dr. R. Fray for their aid in the preparation of this paper.

REFERENCES

1. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, London, 1954.
2. John Vinson, "The Relation of the Period Modulo m to the Rank of Apparition of m in the Fibonacci Sequence," Fibonacci Quarterly, Vol. 1, No. 2, April 1963, p. 38.
[Continued from page 34.]
Theorem. Let $f(x)$ be a Fibonacci function (see [1]). Then,
(2)

$$
\int_{i}^{2} f(t) d t=A \quad(A \text { is a constant })
$$

is a necessary and sufficient condition that

$$
\begin{equation*}
g(x)=\int_{0}^{x} f(t) d t+A, \quad g(0)=A \tag{3}
\end{equation*}
$$

also be a Fibonacci function.
Proof. Necessity. If $\mathrm{g}(\mathrm{x})$ is a Fibonacci function, then $\mathrm{g}(\mathrm{x}+2)=$ $\mathrm{g}(\mathrm{x}+1)+\mathrm{g}(\mathrm{x})$. For $\mathrm{x}=0, \mathrm{~g}(2)=\mathrm{g}(1)+\mathrm{g}(0)$, which simplifies to (2).

Sufficiency. By integration, we have

$$
\int_{0}^{x} f(t+2) d t=\int_{0}^{x} f(t+1) d t+\int_{0}^{x} f(t) d t
$$

Let $\mathrm{t}+2=\mathrm{u}$ and $\mathrm{t}+1=\mathrm{v}$ to obtain

$$
\begin{equation*}
\int_{8}^{x+2} f(u) d u=\int_{1}^{x+1} f(v) d v+\int_{0}^{x} f(t) d t \tag{4}
\end{equation*}
$$

Using (3), we obtain from (4), $g(x+2)=g(x+1)+g(x)$, by using (2).

