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In past articles of the Fibonacci Quarterly; several methods have been t£ • — 
suggested for solutions to n -order difference equations. 

In a series of articles entitled "Linear Recursive Relations," J0 A. 
Jeske attacks and solves this problem by use of generating functions [1, p. 
69], [2, p. 35], [3, p. 197]. 

In another series of articles also entitled, "Linear Recursive Relations," 
Brother Alfred Brousseau, one of the founders of the Fibonacci Quarterly, 
outlines a method of finding Binet forms using matrices [4, p* 99], [5, p. 
194], [6, p. 295], [7, p. 533]. 

What I propose to do here is to find a general solution to the linear homo-
genous difference equation with distinct roots to the characteristic. The 
method of solution will be Laplace Transform, 

Unfortunately, the Laplace Transform does not deal with discrete func-
tions. So, to make the problem applicable, define the continuous function y(t) 
such that y(t) = a n < t < n + 1 n = Q, 1, 2, e B ' , where a , n € Z, 
is the sequence of the difference equation. This changes the discrete sequence 
to a continuous and integrable function. 

The following is the Laplace Transform pair: 

Y(s) = / e"sty(t) dt 
o 

1 / + i ° ° t s y(t) = 2 S / e Y(s) ds . 
Crioo 

The inversion formula is messy. It is a contour integral, and requires a 
knowledge of complex variables. In our case, we will "recognize" the result-
ant inverse. The following Lemma illustrates the integration of our step 
function y(t), and will be used in a subsequent theorem. 
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Lemma 1. If y(t) = a , n < t < n + 1, n = 0, 1, 2, • • • , then 

L{y(t + j)} = esJY<s) - ^ L £ ^ g v
B < M . 

Proof. By definitions, 

oo 

L{y(t + j)} = / y(/3 + j ) e ~ s ^ 3 

Let /S + j —»• t. Then 

L{y(t + j)} .= / y( t )e- s ( t - J ,d t 
00 

s(H). 
] 

oo 

e s j f y(t)e"s t dt. 
o 

= e s j f y(t)e"s tdt - e s j f y(t)e~stdt 
o <r 

• i-1 n+1 
= e°JY(s) - e*J 2S an J e °Mt , 

n=0 n 

since y(t) = a n < t < n + 1, 

si 
= e

 J 

The next Lemma will provide the inverse that we will later "recognize.TT 
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n Lemma 2e If y(t) = a , n < t < n + l , n = 0 , l , 2 , " « , where 
a is a constant5 then 

«• M W 
Proof. By definition, 

Y(s) = J y(t)e Stdt -s t 

o 

oo n + i 
= £ f «Vstdt 

n=0 if 

The third and last Lemma is a very slight modification to the Partial F rac-
tions Theorem to fit our particular needs. Here Q(x) has distinct roots or.. 

Lemma 3. Let Q(x) be a polynomial, degree N. Let P(x) be a 
polynomial, degree <N . Then if 

Proof. 

P(x) 

Le t 

N 

• S(7 

P(x) 
Qlxl 

y. P(<2.) 

- 1 \ ' > i ™ , ^ 

N y . = V li 
i= l (1 - ^ . x " 1 ) 
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N y.Q(x) 
P(x) = £ X 

i=l (l - a.x X) 

N xv.Q(x) 
P(X) = T —1 

r-i. x - a. i=l l 

£% 
l im P(x) = V 

3 1=1 
l im x . 

x —• a. I 
J 

l im 
x'—»a. 

Q(x) 1 
3 (x «i>j 

The l imi t on the r ight i s Q!(#-) when i = j and 0 o therwise . T h e r e f o r e , 

P ( a . ) = a.y.Q'{a.) 
3 V]r } 

P(a.) 
=^>y\ a.Q}{a.) 

J J* V 
We now have sufficient information to solve the p rob lem. F i r s t , we 

find the t r ans fo rm of the difference equation producing {a In = Z j . 
T h e o r e m 1. If y(t) = a , n < t < n + 1, n = 0, 1, 2 , • • • , and 

N 
£ A.y(t + J) = 0: 
j=0 3 

A. a r e coefficients: N i s the d e g r e e , then the t r ans fo rm 

Y(s) -M 
N j - 1 
S Aj E \' 
i= l 3 n=0 

N 

3=0 J 

s(j-n) 

>S] 
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Proof. 
( N ) N 

(j=0 J ) j=o J 
)} = o 

N 
A0Y(s) + £ A L{y(t + j)} = 0 

45 

From Lemma 1, 

N 
A0Y(s) + E A. 

N 
1 

J 

e^Y(s) - £ a e s ( J - n ) 

n=0 n 
, S J , M = o 

N • N j - 1 ,. * / , - s \ 
AoTfa) + E A / ' Y W = E Ai £ a n e s ^ n ) ( ± - ^ - 1 

j=l ]
 j = i J n=o n \ s / 

Y(s) 
Y(s) M 

N j - 1 

- s \ A i i -̂jv n 
s(j-n) 

j = l 3 n=Q 
N 

^ A 3 
i=0 3 

>SJ 

The transform is actually a quotient of polynomials in e . The following is 
a corollary based on the previous theorem and Lemma 3. We get 

Corollary. If y(t) = a , n < t < n + 1, n = 0, 1, 2, • " , and 

N 
E A.y(t + j) = 0 
1=0 J 

and the roots of 

N 
£A. 
j=0 J 

distinct (a.), then 
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Y(s) • M s (1 - a.e S ) 
1 

where 

N j - 1 

= J = l J n=0 
r* N 

J = l J 

g 
Proof. Let x = e . Then 

" ] - ^ 
j=l J n=0 n 

N 
Q(x) = 2 A. x3 

j=0 J 

N . 1 

Q'(x) = Y. 3&ix 

j = l 3 

Then if the roots of Q(x), a., are distinct 

where 

p(x) _ £ n 
^ " i - l 1 - a.e~s 

1 

= i = j=l J n=0 n * 

a. L J A a{ 
.1=1 J 
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Therefore, 

Y(s) • h 4 i (1 - a.e~s) 
I 

where 

J j - i 
£ A £ an aj"n 

j=l J n=0 

]=1 J 

The Corollary gives a very nice little package to unravel. Finding the 
inverse is a direct result of Lemma 2. 

Theorem 2. If y(t) = a , n < t < n + 1, n = 0, 1, 2, • • • , and 
n ' 

N 
E A . y ( t + j) = 0 , 
j=0 J 

then 

N 
y.(t) = E r r f n = o, if 2, ••• , 

i=l 

where 

N j - 1 

j=l 3n=0 n 1 

Ti F 
£ JA.oJ 

The proof is implicit from the Corollary and Lemma 2. Consider the follow-
ing problem of Pell: 
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P 0 = 0 

P i = 1 

P ± Q = 2P ± 1 + P P 0 = 0 
n+2 n+1 n u 

T rans la t ing this into our te rminology y ie lds : 

y(t + 2) - 2y(t + 1) - y(t) = 0 n < t < n + 1 n = 0, 1, 2 , 

. A0 = - 1 ao = 0 
At = -2 aA = 1 

A2 = 1 

Since a1 - 2a - 1 = 0, a = 1 ± N/2. Let 

at = 1 + N/2" 

a2 = 1 - N/2" 

Now from T h e o r e m 2: 

ri 

/i.\ n , n 
y(t) = ytat + y2

a2 
A1aQai + A2(a0a? + a ^ . ) 

A i ^ . + 2A2#? 

After reducing with a0 = 0, 

A 2 a j _ x 

h ~ 2A2<*. + Ai ° r r i " 2or - 2 
l 

Since <yt = 1 + N/2" , 

72 
2(1 + N/2) - 2 2 N/2 

Since a2 = 1 - N/2 , 
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1 1 
yi « — ——— = -

2(1 - \l%) - 2 2N/2 

Therefore, 

n n 
ai - a2 

y(t) = a = — 
n 2^2 

which of course we recognize is the Binet form for the Pell sequence,, In 
fact, similarly we can find Binet forms for Fibonacci, Lucas, or any other 
Homogenous Linear Difference Equations where roots to S.A.x , the char-
acteristic, are distinct. 

One more logical extension of Fibonacci sequence is the Tribonacci. 
This problem is the Fibonacci equation extended to the next degree,, 

n+2 n+2 n+1 n 

In this instance, the most difficult part lies in solving the characteristic 
equation, 

m 3 - m 2 - m - l = 0 , 

for its roots using Cardan formulae. This involves a little algebra and a 
little time. The procedure yields the roots, 

x . . . . . _ 1 / 2 V / 3 / 1 0 i A , \ l / 2 \ 1 / 3 

1 l/l9 + 1 /ll\ 1 / 2 \ 1 / 3 l/l9 l/llY^t 
~ "3 " 2l 27 3 ^ I 2 I 27 3 \ 3 / J 

/19 +1 /iiv/2V/3 u i^v/2V 
127 3 V3/ I \27 " 3 \3j J 

+ ls /I 

a3 = a2 
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Now for those of us more furtunate fellows, we can simplify some of 
this by means of a computer, which yields: 

at = 1.84 
OL1 = -0.42 + 0.61 i 
az = -0.42 + 0.61 i 

From Theorem 2, 

A3 = 1 
A2 = Aj. = A0 = - 1 

ao = 1 
at = 0 

a2 = 0 

A ^ a . + A2(a0tf2 + a.a.) + A3(a0a? + ajLa? + a2a.) 
y . = : — — M 

1 A ^ + 2A2tf? + 3A3a? 

Reduced, (a3 = a1 + a + 1) 

1 a? + 2a. + 3 
l l 

Therefore, 

y(t) = a = 
\ a i + toi + 3 / \ ^2 + 2<*2 + 3 / \ <*3 + 2az + 3J 

Now, you, too, can find your own Binet forms. 

FOOD FOR THOUGHT 

Brother Alfred Brousseau says, for N = 2, 

ao<*2 " a i y
 ao<*i " aA 

1 ~ <*2 - a i 2 ~ <*i - a 2 

[Continued on page 112. ] 


