$D(3)=-\left|\begin{array}{lll}0 & a_{12} & a_{13} \\ a_{21} & a_{22}-1 & a_{23} \\ a_{31} & a_{32} & a_{33}-1\end{array}\right| \xlongequal{2 a_{23}-a_{21}-a_{23} a_{31}-a_{13} a_{21} a_{32}} \begin{array}{r} \\ +a_{13} a_{22} a_{31}-a_{13} a_{31} .\end{array}$

Each term here has the sign preceding it, as all factors are positive. Given $a_{i j}$ with $i \neq j$, we can take a_{22} and/or a_{33} so large that the positive terms dominate, since these factors occur only in positive terms. Thus we reach a contradiction of the inequality for $n=3, a_{11}=1$.
[Continued from page 60.]

REFERENCES

1. Roseanna F. Torretto and J. Allen Fuchs, "Generalized Binomial Coefficients," Fibonacci Quarterly, Vol. 2, No. 4 (Dec. 1964), pp. 296302.
2. Dov Jarden, Recurring Sequences, Published by Riveon Lematimatika, Jerusalem (Israel), 1958.
3. Klaus Günther Recke, Elementary Problem B-153, Fibonacci Quarterly, Vol. 6, No. 6 (Dec. 1968), p. 401.
4. Phil Mana, Elementary Problem B-152, Fibonacci Quarterly, Vol. 6, No. 6 (Dec. 1968), and Elementary Problems B-176 and B-177, Fibonacci Quarterly, Vol. 7, No. 5 (Dec. 1969).
5. J. Worpitzky, "Studien über die Bernoullischen und Eulerschen Zahlen," J. Reine Angew. Math., Vol. 94 (1883), pp. 202-232.
6. G. Frobenius, "Ǘber die Bernoullishen Zahlen und die Eulerschen Polynome, " Preuss. Akad. Wiss., Sitzungen (1910), pp. 809-847.
7. L. Carlitz, "q-Bernoulli and Eulerian Numbers," Trans. of the A. M. S. , Vol. 76 (1954), pp. 22)-350.

