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Among the many mathematical gems which fascinated the ancient Greeks,
the Polygonal Numbers were a favorite. They offered a variety of exciting
problems of a wide range of difficulty and one can find numerous articles
about them in the mathematical literature even up to the present time.

To the uninitiated, the polygonal numbers are those positive integers
which can be represented as an array of points in a polygonal design. For
example, the Triangular Numbers are the numbers 1, 3, 6, 10, -+ associ-

ated with the arrays

X
X X X
X XX XXX

X, XX, XXX, XXXX,

The square numbers are just the perfect squares 1, 4, 9, 16, *-+ associ-

ated with the arrays:

X XXX
X X X X XXX
XX XXX XXZXX

X, XX, XXX, XXX X,

Similar considerations lead to pentagonal numbers, hexagonal numbers and
S0 on.

One of the nicer problems which occurs in this topic is to determine
which of the triangular numbers are also square numbers, i.e., which of the

numbers

+
1, 3, 6, 10, -, n@m + 1)
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are perfect squares. There are several ways of approaching this problem [1].
I would like to direct your attention to a very elementary method using the
discovery approach advocated so well by Polya [2].

A few very natural questions arise, such as, "Are there any square-

triangular numbers?'. This is easily answered since

P2

is such a number. To show that more than this trivial case occurs, we find
that
89
= 2 = —_—
36 6 5
is also a square triangular number. One would then naturally ask, "Are
there infinitely many square-triangular numbers?'. This is considerably

more difficult to answer since a careful check reveals the next one to be

352 = =22 = 1225

and we seethat they do not appear to be very dense. In seeking to answer the
last question, one quite naturally asks, 'Is there a formula which always
yields such a number, or better yet, is there a formula which yields all such
numbers ?'". This, in turn, leads us to ask, "'Is there a pattern in these num-
bers which would help us guess a formula?'.

To find a pattern from the three cases 1, 36, 1225, seems rather
futile, so we apply a little (!) more arithmetic to find that the next two cases

are

9042 - 288:289
2

= 41,616

and
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1681-1682

2 =
1189 5

= 1,413,721 .

We now seek a pattern from the five cases: 1; 36; 1225; 41,616; 1,413,721.
One is immediately discouragingly impressed by the relative scarcity of
square-triangular numbers and the possibilityof a nice easy-to-guess pattern
seems quite remote; but, having gone this far, it does not hurt to atleast pur-
sue this course a little further. Let us introduce some notation to facilitate
the work by calling S, T, and (ST)n the nt]h square, triangular, and

square-triangular numbers, respectively. Organizing our data to date, then,

we have:
1=(T)y =8 = 12 = 12 = T,
36 = (ST)y = 8y = 62 = 89 = Ty
1,225 = (ST)3 = S35 = 35 = ‘%’@ = Ty
41,616 = (ST)y = Sy = 2042 = ﬁ%’z—gg = Toss
1,413,721 = (ST); = Sygg = 11892 = 1i81—2'1—6§% = Tigs1

The adventurous reader is encouraged at this point tolook for a pattern
and formula on his own before reading any further.

For the unsuccessful guessers or those wishing to compare results, let
us carry on by writing the numbers in various ways; in particular, we might

look at them in prime factored form.

2
1=(ST); =8 = 12 = (11)? = %—

1
[\
1!
-

-

Il

. 8. 32
36 = (ST)y = S = 6% = (2:3)? = %—9 2

11
3
oo

49.50 2.52.72
1,225 = (ST)3 = 835 = 352 = (5.7)2 = 92 - 5 — T49
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28828 5,932,172
(22.3.17)2 = 822 2 -2 2 17 - Tags

1l

4:1, 616 = (ST)4 = 8204 = 2042

1681-1682 A2-292'412
(29-41)% = 5 = =5 = Tign

1l
1l

1,413,721 = (ST)5 = Sy;g9 = 11892

Is there a pattern now? We note that as far as patterns are concerned,
the form of the Sn's is a little nicer than that of the Tn's, but essentially
they are the same, so we shall concentrate on the Sn' S,

Since we only have five cases at hand, and the sixth case is likely to be
a bit far off, we must make the most of what we have. We might note that
three of the cases are the square of exactly two factors whereas the trivial

case s; = 12 could be written with any number of 1's and
8204 = (22-3'17)2

could be reduced to the square of two factors if we dropped the requirement
of prime factors. It might be worthwhile to write each Sn as the square of
two factors. This allows no options except for Sy, which could then be

written in five non-trivial ways, namely,
Sepq = (2°102)2 = (3-68)2 = (4-51)2 = (6:34)2 = (12.17)%.

Do any of these fit into a pattern with the other four? If we looked only for
the monotone increasing patternof the factors we would choose Sy = (12-17)2,

Now, looking at the data so arranged, we have:

S = (1.1)2
S¢ = (2-3)2
Sg5 = (5:7)2
Spos = (12:17)%

81189 = (29'4.1)2

Look hard, now, for there is a very nice pattern here; and in fact, it is

recursive of a Fibonacci type. Do you see that 1+1=2, 1+2=3, 2+3 =
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5, 2+86 =17, 5+7 =12, 5+12 =17, 12 +17 =29, and 12 +29 = 419
Let us write this into our data as:

(ST)y = (1-1)

(ST)y = 282 = (@+12@Q+1+ 12 = (1+1)%@21+1)2
(ST)3 = (572 = (2+3)2.2 +2 + 3% = (2+3)2%(22 +3)?
(ST)y = (120172 =  (B+7%6G +5+ 7% = (5+7%@5+7)?
(ST)5 = (29:41)2 = (12 +17)2.(12 +12 +17)2 = (12 + 17)2-(2:12 + 17)2

Before formalizing and trying to prove this guess, it would be well to
test it as much as possible to see if it works at all. Our first test will be to
see if (29 +41)2(29 + 29 + 41)2 is a triangular number.

9800-9801
2

(29 + 41)2(29 + 29 + 41)2 = 702.992 = 4900-9801 =
is triangular and our confidence in our guess is considerably strengthened.
Our next test will be to see if this new square-triangular number is, in fact,
the next one; i.e., is it (ST)g? This involves checking to see if there are
any squares between Tigq and Tggy which is hardly an inviting exercise in
arithmetic. Therefore, let us use the sometimes wise advice that "If you
can't prove it, generalize it."

In order to proceed on with a proof we introduce a bit more notation.
Let a be defined by the recursive relation a; = 0, a; = 1, and a, =
2an_1 + 2, 9 for n2> 2. For n =1, 2, 3, 4, 5, this gives us the sequence
1, 2, 5, 12, 29 which we recognize as the first factors for (ST);, (ST),,
(ST)y, (ST)4, (ST)5, respectively. We also note that the second factors 1,
3, 7, 17, 41 are ay+ay, a,+tay, ag+ay, a,+ag, as+ay respectively.

Finally, before proceeding with our proof, we notice that in order to
prove a positive integer m is a triangular number, it suffices to show that

there exists a positive integer n such that

_nn + 1)
2
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or equivalently that there exists positive integers a and b such that

with |a - b| = 1.
We now attempt to prove the following conjecture which is a formalized

generalization from our data.

Conjecture A: (ST)n = afl(an + _1)2 for n=1,2,3, "

ap

Proof: We will attempt the proof in two parts.

(1) The sequence of numbers a?l(an + an_l)2 for n = 1,2, 3, ***
are square-triangular numbers.

(2) This sequence is in fact all of the square-triangular numbers.

Clearly, atfl(an + an_l)2 is a square number for all n > 1 so we concen-
trate on showing these numbers are also triangular for n 2 1. Using math-
ematical induction, we first dispense with the case for n = 1 as 12(1 + 0)2 =
1= (@-1/2 with |2 - 1|= 1.

Now assume afl(an +a_ .)% is triangular with

n-1
2 2
2an (alr1 + a )

)2 n-1
n-1 2

I

2
aLn(aI1 + a
and
2 _ 2| =
|2an (an + an_l) l 1

for some n = 1. Then

2 2
o 2(2:11n + an_l) (221n ta o+ an)
n 2

2 +
Ap4@pq T2

where
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|2(2an +a, ) - (Ga an_l)zl
= ‘(83‘?1 *8aa, gt 2 g) - (G +6aa  + a;_l)l
= \_ai +2aa o+ a?l_ll
= laé - 2aR, g - a?l—ll - l2a§1 - (e, an—l)2| -1

2
n+1

Now let

Therefore a“ (@ + atn)2 is also triangular and (1) is proved.

n+1

kik; + 1)
my =y
be an arbitrary square-triangular number. There are two cases which can
be considered, namely k; even or k; odd. It is immaterial which we con-
sider first, as we will be alternating back and forth from one to the other in
a descending sequence of square-triangular numbers which will terminate
finally at (ST); = 1. To be definite, let k; be odd which implies

ky + 1
2

is an integer and

ky + 1
ki’ 3 =1

(we are using the common notation of letting (a,b) denote the greatest com-

mon divisor of a and b). Therefore

ky + 1)

a square implies that both k; and (kq +1)/2 are squares. Let
ky +1
2
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and ky = ¢} with by, ¢; > 1. Now k; > 1 implies by < ¢y and, in fact,

by = ¢y, if and only if

if and only if ky = 1 if and only if m21 = 1, in which case

mi = al(@; +a9)? = (ST) ,

and we are done. Consider then by < c; and define by = ¢y -by, ¢ =
2by - ¢y, and mg = b%c% .
Since

20 - ¢} = kg +1 -k =

|
=

we factor and get
(NZby - c)(N2by +¢cy) = 1 ,

where by, ¢y > 1 implies NZb; + ¢y > 0, which implies that NZby- ¢4
>0, so AN2by> ¢y Now 3/2 > A2 so it also follows that 3by/2> cy
which is equivalent to 3by > 2cy and thus 2by - ¢4 > ¢g - by. Also, cy > by
implies both that cy - by > 0 and that by > 2b; - ¢y, which then gives usthe
inequality ¢y > by > 2by - ¢y > ¢4 - by > 0, or equivalently, ¢; > by > ¢y >
by > 0.

Furthermore,

213 cg

2
my = bycy; = )

where

263 - | = [2ter - ) - @by - 2] = |ef - 2bi| = 1] =1,
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2, . . .
S0 my is also a square-triangular number and is necessarily smaller than

m21 from the last inequality. Now let

2bics Ky (ky + 1)

Mt T T T3 ’

with 2b? = k, (since 2bj - c} = -1 gives ci = 2bi+ 1) and we get ky
even as predicted earlier. It might be observed that in this case mj # 1
which is equivalent to our fact that cy > b,.

Now continue in the same manner by defining bs = ¢y - by, c3 = 2by —
cy, and m% = bgcg. In this case, by < c3 since if bg > c3, then by sub-
stitution ¢y - by > 2by - ¢, which implies c¢; > 3by/2. Recalling that

Zb%—cg =czi—2b21=—1,
which is equivalent to c} - zb§ = 1, we get by using c, > 3by/2 that
(3by /202 - 2bE < 1 .
This implies
bz

—_<
-1

which implies b, is a positive integer with square less than 4, or that b, =
1. This, however, yields ¢ - 2.12 = 1 or ¢} = 3 in which case c, = 3
must be a positive integer, which is false. Thus the hypothesis that bs > cj
is false and bg < c3 as claimed. We might note that by = c3 is equivalent
to ¢y = 3by/2 which implies

2
1= o} - 268 = (Bby/2) - 2b) = 2,

which implies that by, = 2 and also that

This, in turn, givesus by = c3 =1 aswellas b; =5, ¢y =7, so
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m} = 52.7 = al(ag + a,)2 = (ST),

and we are done.
In general, with by = cj,

) 2b§c§
mi = bic; = 5 )
with
2b3 - ci| = |2(c; - by)2 - @by - cp)?| = |ck - 2b}| = 1

S0 mg is again a square-triangular number. Since

Cz>b2>2b2—02202—b2>0,

or equivalently
02>b2>03zb3>0,

mg is again smaller than mj. If we let

2bics (kg + D)kg
mg = 3 = 3 )

with kg = c% (since from above 2b§ -ct =1 gives 2b} = cg +1) we have
Zbg = kg +1. Thus kg is now odd as in the first case and one can proceed
in exactly the same manner generating new and smaller square-triangular
. . . 2 = 2 2 = . — —
numbers until we finally arrive at m} bn ¢ 1 with bn c, = L

This gives us

and
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which gives bn_1 = 2 and Ch1 = 3 when solved. It follows that

n-2 n-2 n-2
and
3 = Ch-1 T an-z = Chog
which yields bn—Z =5 and Cha = 7, *++. In general, for j > 2, bj+1 =
c.-bh,,
J J
c].+1 = ij - c] s

and

b. =c. , -Dhb. ., c., = 2b, , - cC. ..

i i-1 -1 i -1 7 %1
Therefore,

2bj + biyy = 2(e; g = by_g) * (ej-by) =2, g - 2b, y+ @b ;e )
- ey - by
and

b.+b. . =b.+ @b, +b,..) = 3b. +b,.. = 3c. . - 3b.
jPj1 = By @by by I RS S B B I

+ (ij_1 - cj+1) - (c]._1 - bj-l) = cj_1 .
We have just done the computation for an induction proof that bj = an—j 41
and c.=a +a for j=1,2, ---, n. In particular, for j =1, it

j “n-j+1  “n-j
follows that
)2

- ow2a? o
mj = bjcy = alf@ +a

and mi is in our sequence as claimed, and (2) is proved.

Since the sequence is monotonically increasing, we have that

= q2 . 2
(ST)n as (an+a 1)

n-—
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as claimed, and our Conjecture A is true.

Thus the empirical data of five casesled usto guess a very nice recur-
sion formula which turnedout to be valid. So even though the square-triangular
numbers are very sparse, not only in relation to the positive integers, but
also in relation to either the square or triangular numbers themselves, there
are still infinitely many of them and they behave very well. In fact, they be-
have beautifully.

There are many other very nice relationships in these numbers which
areleft for the reader to derive and/or prove. A few of these arelisted here
to whet the appetite.

(i) (ST); = ai(a; + a,)?

a% (32 + 31)2 = (23,1 + ao)z (33.1 + ao)z

(ST),

— a2 2 — 2 2 >
(ST)n an(a](1 + an_l) (Zan_1+an_2) (3an_1+an_2) for n > 2.

(ii) (ST)n is odd if and only if n is odd if and only if a, is odd.

n n n 2n 2
i) a = LENZ)N - (- N2 g gr) - ((Hﬁ) oo )
" 2N2 o 4NZ
Gv) 22 - @ +a )= (DT for nx1.
(V) If Vn(Vn + 1)
(ST) =a%(@ +a .)2=8 =uw=T = ’
n n"n “n-1 w, n ' -3

_ > : .
then Voel S U1tV T Y, for n 2 1. This may be proven with

or without (vi) below.

(vi) The sequences of u's and vn's are generated by the recursive

formulae:
u =0, uy =1, and un:6un-1_un—2 for n=> 2,
vo =0, vy =1, and v =6v ,-v ,+2 for n=2.
n n
wii) 0 = (38 + 2\2)" - (3 - 2N2)
4N2Z
L - a+3Nm)E+2vE) @ - 3NmE-2vHtt 1
n NG 2

(viii) The square-triangular numbers are precisely the numbers x*y>
such that x2 - 2y> = 1 or x% - 2y? = -1 with x and y positive
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integers. These types of Diophantine equations are commonly

known as Pell's Equations.

Having seen these very nice results, the mathematician naturally asks,
""What about the triangular-pentagonal numbers, square-pentagonal numbers,
and so on?". This is not at present completely answered, but many in-roads
have been made by some outstanding mathematicians. In particular, W.
Sierpinski devoted some time to this problem [3], but perhaps the nicest re-
sult so far obtained is one derived by Diane (Smith) Lucas as an undergradu-
ate at Washington State University. In a paper (not yet published) she obtained
the very beautiful result that for 3 < m < n, there exist infinitely many
numbers which are both n-gonal and m-gonal if and only if

i) m=3 and n =6
or

(ii) (m - 2)(n - 2) is not a perfect square.

With the machinery she developed, it is quite easy to derive for exam-

ple, that the nth pentagonal-triangular number

@2 - NB)YOT +563) + @2 + N3)OT - 5683 - 4
Ps,3), = 48

which is a result obtained by Sierpinski.
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