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1. INTRODUCTION 

In an earlier issue of this quarterly, Cohn* investigated the value of 
the residues modulo n of X when 0 < X < (n - 1). The object of this 
paper is to study the value set modulo m of another function — the cyclotomic 
polynomial <I>3(X) = X2 + X + 1, and further to consider some properties of 
the composition of this function with itself n times. We will denote this n-
fold composition by 

n:d>3(X) = <t>3^>3(—(<l>3(X))...)) . 

We define 

¥(m,n) = {nxfcCX) (mod m) | 0 < X < m} , 

and such that if a is in (m,n), then 0 < a < m. Further, we let r(m) 
be the minimum n for which ^(m,n) = ^(m,n + 1) and refer to ^(m,r(m)) 
simply as ^(m). The cardinality of ^(m,n) will be denoted by NWm,n)). 

2. PROPERTIES 

Definition. We say that f(X) is modulo m-symmetric if f(X) = 
f(-X-l) (mod m) and that f(X) is modulo m-doubly symmetric if f(X) = 

f (m/2 - X - 1) = f (m/2 + X) = f (-X - 1) (mod m) for 0 < X < m. 
Property 1. n:<t>3(X) is modulo m-symmetric. 
Proof. We have 

d>3(X) = X 2 + X + 1 = X2 + 2X + 1 - X - 1 + 1 = <D3(-X - 1) 

and hence also 
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n:4>3(X) = n:<I>3(-X - 1) . 

We note that X and -X - 1 cannot s imultaneously be e lements of ^(m) 

s ince r:<i>3(X) is modulo m - s y m m e t r i c . 

P r o p e r t y 2. n:<f>3(X) i s modulo 2p-doubly s y m m e t r i c . 

Proof. E l emen ta ry calculat ions yield 

<J>3(p - X - 1) = <D3(p - + X ) = p * + p + X 2 + X + l (mod 2p) . 

Now 

p2 + p = 2p[(p + l ) / 2 ] = 0 (mod 2p) 

and hence 

<1>3(X) = <S>3(p + X) (mod 2p) . 

These congruences together with P r o p e r t y 1 yield the resu l t . 

P r o p e r t y 3. N ( ^ ( p , l ) ) i s (p + l ) / 2 . 
Proof. Since <t>3(X) i s modulo p - s y m m e t r i c N ( ^ ( p , l ) ) i s a t mos t 

(p + l ) / 2 . Suppose 

<t>3(X) s <I>3(X + a) (modp) , 

with a £ 0 (modp) . Then, s imple calculat ions yield 

a(2X + a + 1)• = 0 (modp) . 

Since a £ 0 (mod p) , we mus t have X + a = -X - 1 (mod p). 

P r o p e r t y 4. N(^(m)) f 1 for m > 2. 
Proof. Clear ly a n e c e s s a r y condition that N W m ) ) = 1 i s that 4>3(X) = 

X (mod m) for exactly one X where 0 < X < m. In o r d e r for the above 
congruence to hold, we need X2 = - 1 (mod m). However , for m > 2, this 
congruence has e i ther two dis t inct solutions o r no solutions. 
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P r o p e r t y 5. N W 2 n ) ) = 2 n ~ 1 ; r ( 2 n ) = 1. 

Proof. F i r s t , we note that for any a in ^ (2 ,1) we have a = 1 (mod 

2). Thus since X and -X - 1 a r e of opposite par i ty modulo 2 and <f>3(X) 

is modulo 2 - s y m m e t r i c ^ ( 2 ,1) i s completely de te rmined by 4>3(2k 

k = 1, • • • , 2 " . Suppose that 

<f>3(2ki - 1) = <I>3(2k2 - 1) (mod 2 n ) 

with 1 S. k l 5 k2 — 2 ~ . It can readi ly be verif ied that this supposition yields 

4(k | - k\) - 2(ki - k2) = 0 (mod 2 n ) 

and hence 

(kj - k2)(2kA + 2k2 - 1) = 0 (mod 2 n ~ 1 ) , 

from which it follows immedia te ly that kt = k2. Hence, N(*(2 ,1)) = 2 

and since a = 1 (mod 2) we mus t have r(2 ) = 1. 

P r o p e r t y 6. If p = 1 1 , 13, 17, 19 modulo 20 then r(p) > 1. 

Proof. Let 

d>3((p - l ) /2) = p (mod p) . 

F i r s t we note that if 

<D3(X) £ (p - l ) / 2 (mod p) 

for al l X, then p rope r t i e s 1 and 3 imply that j8 i s an e lement of ^ ( p , l ) 

while it i s not in ^(p) and hence r(p) > 1. Now from 

X2 + X + 1 = (p - D / 2 (mod p) , i 

it follows that 

2X2 + 2X + 3 = 0 (mod p) . 
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The quadratic formula indicates that -5 must be a quadratic residue modulo 
p if this congruence has a solution. However -5 is a quadratic non-residue 
for the p in the hypothesis. 

Property 7. NWm)) is multiplicative. 
Proof. Let 

e l e t 
m = Pi ••• p t . 

For each 7 in ^(m) there exists an X such that 

r:<t>3(X) - y = 0 (mod m) . 

Thus 

e. 
r:<t>3(X) - y = 0 (mod p . 1 ) , 1 < i < t , 

and hence 

e. 
y = a. (mod p.1) 

e. 
for some a. in ty(p. ). The Chinese Remainder Theorem assures a unique 
y, 0 < y < m, as a solution to this system of congruences, and hence 

t e. 
NWm)) < n [NWp.1))] . 

1 1 

To see that equality actually holds, we suppose 

e. 
y = a. (mod p . 1 ) , 1 < i < t . 

Since 

e. 
r:<D3(X) - y = <D3(X) - or. = 0 (mod p . 1 ) 

has a solution for each i we are guaranteed a solution to the congruence 
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r:<j>3CX) - y = 0 (mod m) . 

Thus y is in ^(m). 
Property 8. r(m) = max r(p. 1 ) J 1 < i < t . 
Proof. We denote 

e. 
max r(p. ) 

by rf and consider 

rf:cp3(X) = y (mod m) . 

Since for 

e. 
r':<t>3(X) = y = a (mod p 1) , 

we have a. in 
I 

e. e 
¥ ( p , \ r ' ) = ^(p.1) , 

y must be in ^(m). On the other hand, for n < r!
 5 there exists at least 

one p such that for n:<t>3(X) = y (mod m), 

e. 
n:<f>3(X) = y = a{ (mod p.1) 

e. 
with a. not in ^(p. ) and hence y cannot be in ^(m). 

3. EXTENSION 

We note that Properties 7 and 8 can easily be extended to the composi-
tion of other cyclotomic polynomials n:ct> (X) modulo m. However, the other 
properties given are not generally valid for n:<p (X). In particular, for 4>5(X) 
we have r(2n) = n and N(t(2n)) = 1 with 

f(2n) = 2 + 2 2 + . - - + 2 - l for n = 1, • • • , 6 . 


