PYTHAGORAS REVISITED

HARLAN L. UMANSKY
Emerson High School, Union City, New Jersey

A Pythagorean triplet consists of three numbers (a, b, c) in which $a^{2}+b^{2}=c^{2}$. Such triplets are generated by m and n where $m^{2}-n^{2}=a$, $2 \mathrm{mn}=\mathrm{b}$, and $\mathrm{m}^{2}+\mathrm{n}^{2}=\mathrm{c}$.

What are the conditions that in such triplets $a+b=L^{2}$, as in (9, 40, 41)?

Set $\mathrm{m}+\mathrm{n}=\mathrm{K}$ and substitute $\mathrm{K}-\mathrm{n}=\mathrm{m}$ in $\mathrm{a}+\mathrm{b}=\mathrm{L}^{2}$, letting $\mathrm{a}=$ $\mathrm{m}^{2}-\mathrm{n}^{2}$ and $\mathrm{b}=2 \mathrm{mn}$. Then, $\mathrm{K}^{2}-2 \mathrm{n}=\mathrm{L}^{2}$ or $\mathrm{K}^{2}-\mathrm{L}^{2}=2 \mathrm{n}$.

This last equation is of the form $A^{2}-B^{2}=2 C^{2}$, whose general solution is $\mathrm{A}=\mathrm{t}^{2}+2 \mathrm{u}^{2}, \quad \mathrm{~B}=\mathrm{t}-2 \mathrm{u}^{2}$, and $\mathrm{C}=2 \mathrm{tu}$ [1].

Hence, $K=t^{2}+2 u^{2}, L=t^{2}-2 u^{2}$, and $n=2 t u$. Since $m=K-n$, then by substitution, $m=t^{2}+2 u^{2}-2 t u$ 。

We desire to choose $m>n$. This condition will obtain when $t^{2}+2 u^{2}$: $\mathrm{tu}>4$.

Several other Pythagorean triplets of this type are (133, 156, 205), ($2461,5460,5989$), and $(12,549,34,540,36,749)$.
I. What are the conditions that in Pythagorean triplets $a+b=L^{2}$ and $\mathrm{m}+\mathrm{n}=\mathrm{K}^{2}$, and in $(1,690,128 ; 9,412,096 ; 9,562,640)$ in which $\mathrm{m}=2372$ and $\mathrm{n}=1984$?

Since $m=K^{2}-n$ and the conditions for $a+b=L^{2}$ have been found above, we can set $t^{2}+2 u^{2}-2 t u=K^{2}-2 t u$. Then $K^{2}=t^{2}+2 u^{2}$ or $K^{2}-t^{2}$ $=2 u^{2}$, an equation of the form $A^{2}-B^{2}=2 C^{2}$. Whence

$$
\begin{aligned}
\mathrm{K} & =\mathrm{x}^{2}+2 \mathrm{y}^{2} \\
\mathrm{t} & =\mathrm{x}^{2}-2 \mathrm{y}^{2} \\
\mathrm{u} & =2 \mathrm{xy}
\end{aligned}
$$

Therefore,

$$
m=\left(x^{2}-2 y^{2}\right)^{2}+2(2 x y)^{2}-2(2 x y)\left(x^{2}-2 y^{2}\right)
$$

or

$$
m=\left(x^{2}+2 y^{2}\right)^{2}-4 x y\left(x^{2}-2 y^{2}\right)
$$

and

$$
n=4 x y\left(x^{2}-2 y^{2}\right) .
$$

We desire to choose $\mathrm{m}>\mathrm{n}$. This condition will obtain when $\left(\mathrm{x}^{2}+2 \mathrm{y}^{2}\right)^{2}$: $x y\left(x^{2}-2 y^{2}\right)>8$.

In the example above, $x=8, y=1$. Another such triplet is one in which $\mathrm{x}=15$ and $\mathrm{y}=2, \mathrm{~m}=28,249$ and $\mathrm{n}=26,040$.
II. What are the conditions that in Pythagorean triplets $a+b+c=M^{2}$, as in $(63,16,65) ?$

Since $a=m^{2}-n^{2}, b=2 m n$, and $c=m^{2}+n^{2}$, we can set

$$
\mathrm{m}^{2}-\mathrm{n}^{2}+2 \mathrm{mn}+\mathrm{m}^{2}+\mathrm{n}^{2}=\mathrm{M}^{2}
$$

by substitution. Then

$$
2 m^{2}+2 m n-M^{2}=0
$$

Use the quadratic equation formula to solve for m. Then

$$
m=-2 n \pm \sqrt{4 \mathrm{n}^{2}+8 \mathrm{M}^{2}}: 4
$$

or

$$
m=-n \pm \sqrt{\mathrm{n}^{2}+2 \mathrm{M}^{2}}: 2
$$

We will show that $n^{2}+2 M^{2}$ is a perfect square when $n=d^{2}-2 e^{2}$ and $\mathrm{M}=2 \mathrm{de}$.

Set $n^{2}+2 M^{2}=P^{2}$. Then

$$
\mathrm{P}^{2}-\mathrm{n}^{2}=2 \mathrm{M}^{2}
$$

which is an equation of the type $A^{2}-B^{2}=C^{2}$. Whence

$$
\begin{aligned}
\mathrm{P} & =\mathrm{d}^{2}+2 \mathrm{e}^{2} \\
\mathrm{n} & =\mathrm{d}^{2}-2 \mathrm{e}^{2} \\
\mathrm{M} & =2 \mathrm{de}
\end{aligned}
$$

Then, by substitution,

$$
\mathrm{m}=-\mathrm{d}^{2}+2 \mathrm{e}^{2} \pm \sqrt{\left(\mathrm{d}^{2}-2 \mathrm{e}^{2}\right)^{2}}+\sqrt{2(2 \mathrm{de})^{2}: 2}
$$

or $m=2 e^{2},-e^{2}$. Discard the negative result.
We desire to choose $m>n$. This condition will obtain when $d<2 e$ and $d^{2}>2 \mathrm{e}^{2}$.

In triplets of this type, there is the bonus that $m+n$ is also a square, namely, d^{2}.
III. What are the conditions that in Pythagorean triplets $a+b=L^{2}$ and $\mathrm{a}^{2}=\mathrm{b}+\mathrm{c}$, as in $(57,1624,1625)$?

Since $\mathrm{a}^{2}=\mathrm{b}+\mathrm{c}$, then by substitution,

$$
\left(\mathrm{m}^{2}-\mathrm{n}^{2}\right)^{2}=2 \mathrm{mn}+\mathrm{m}^{2}+\mathrm{n}^{2}
$$

or

$$
\left(\mathrm{m}^{2}-\mathrm{n}^{2}\right)^{2}=(\mathrm{m}+\mathrm{n})^{2}
$$

whence, $m=n+1$.
We have shown earlier that if $a+b=L^{2}$, then $m=t^{2}+2 u^{2}-2 t u$ and $n=2$ tu. Since $m=n+1$ if $a^{2}=b+c$, then set

$$
\mathrm{t}^{2}-2 \mathrm{tu}+2 \mathrm{u}^{2}=2 \mathrm{tu}+1
$$

or

$$
t^{2}-4 t u+2 u^{2}-1=0
$$

Solve for t using the quadratic equation formula. Then

$$
t=4 u \pm \sqrt{16 u^{2}-8 u^{2}+4}: 2
$$

or

$$
t=2 u \pm \sqrt{2 u^{2}+1}
$$

Now $2 u^{2}+1$ will be a perfect square when $u=0,2,12,70,408, \cdots$, a recurrent series in which $q_{1}=0, q_{2}=2$, and $q_{n}=6 q_{n-1}-q_{n-2}$.

As $u=0,2,12,70,408, \cdots$, t correspondingly equals $\pm 1,4 \pm 3$. $24 \pm 17, \quad 140 \pm 99, \quad 816 \pm 577, \cdots$.

The first six Pythagorean triplets in which $a+b=L^{2}$ and $a^{2}=b+c$ are listed below in abbreviated form, since in these triplets, $n=m-1$ and $\mathrm{c}=\mathrm{B}+1$.

M	A	B
	9	40
29	57	1,624
169	337	56,784
985	1,969	$1,938,480$
5,741	11,481	$65,906,680$
33,461	66,921	$2,239,210,120$

REFERENCE

1. Albert H. Beiler, Recreations in the Theory of Numbers, Dover Publications, Inc., New York, 1964, p. 129
