PYTHAGORAS REVISITED

HARLAN L. UMANSKY Emerson High School, Union City, New Jersey

A Pythagorean triplet consists of three numbers (a, b, c) in which $a^2 + b^2 = c^2$. Such triplets are generated by m and n where $m^2 - n^2 = a$, 2mn = b, and $m^2 + n^2 = c$.

What are the conditions that in such triplets $a + b = L^2$, as in (9, 40, 41)?

Set m + n = K and substitute K - n = m in $a + b = L^2$, letting $a = m^2 - n^2$ and b = 2mn. Then, $K^2 - 2n = L^2$ or $K^2 - L^2 = 2n$.

This last equation is of the form $A^2 - B^2 = 2C^2$, whose general solution is $A = t^2 + 2u^2$, $B = t - 2u^2$, and C = 2tu [1].

Hence, $K = t^2 + 2u^2$, $L = t^2 - 2u^2$, and n = 2tu. Since m = K - n, then by substitution, $m = t^2 + 2u^2 - 2tu$.

We desire to choose $m \ge n$. This condition will obtain when $t^2 + 2u^2$: tu ≥ 4 .

Several other Pythagorean triplets of this type are (133, 156, 205), (2461, 5460, 5989), and (12, 549, 34, 540, 36, 749).

I. What are the conditions that in Pythagorean triplets $a + b = L^2$ and $m + n = K^2$, and in (1,690,128; 9,412,096; 9,562,640) in which m = 2372 and n = 1984?

Since $m = K^2 - n$ and the conditions for $a + b = L^2$ have been found above, we can set $t^2 + 2u^2 - 2tu = K^2 - 2tu$. Then $K^2 = t^2 + 2u^2$ or $K^2 - t^2$ = 2u², an equation of the form $A^2 - B^2 = 2C^2$. Whence

$$K = x^{2} + 2y^{2}$$

 $t = x^{2} - 2y^{2}$
 $u = 2xy$.

Therefore,

m =
$$(x^2 - 2y^2)^2 + 2(2xy)^2 - 2(2xy)(x^2 - 2y^2)$$
,
83

and

$$n = 4xy(x^2 - 2y^2)$$
.

We desire to choose m > n. This condition will obtain when $(x^2 + 2y^2)^2$: $xy(x^2 - 2y^2) > 8$.

In the example above, x = 8, y = 1. Another such triplet is one in which x = 15 and y = 2, m = 28,249 and n = 26,040.

II. What are the conditions that in Pythagorean triplets $a + b + c = M^2$, as in (63, 16, 65)?

Since $a = m^2 - n^2$, b = 2mn, and $c = m^2 + n^2$, we can set

$$m^2 - n^2 + 2mn + m^2 + n^2 = M^2$$

by substitution. Then

$$2m^2 + 2mn - M^2 = 0$$
.

Use the quadratic equation formula to solve for m. Then

$$m = -2n \pm \sqrt{4n^2 + 8M^2}$$
:4

or

$$m = -n \pm \sqrt{n^2 + 2M^2}$$
:2.

We will show that $n^2+2M^2\,$ is a perfect square when n = d^2 - $2e^2$ and M = 2de.

Set $n^2 + 2M^2 = P^2$. Then

$$P^2 - n^2 = 2M^2$$
,

84 or which is an equation of the type $A^2 - B^2 = C^2$. Whence

$$P = d^{2} + 2e^{2}$$
$$n = d^{2} - 2e^{2}$$
$$M = 2de$$

Then, by substitution,

m =
$$-d^2 + 2e^2 \pm \sqrt{(d^2 - 2e^2)^2} + \sqrt{2(2de)^2}$$

or $m = 2e^2$, $-e^2$. Discard the negative result.

We desire to choose $m \ge n$. This condition will obtain when $d \le 2e$ and $d^2 \ge 2e^2$.

In triplets of this type, there is the bonus that m + n is also a square, namely, d^2 .

III. What are the conditions that in Pythagorean triplets $a + b = L^2$ and $a^2 = b + c$, as in (57, 1624, 1625)?

Since $a^2 = b + c$, then by substitution,

$$(m^2 - n^2)^2 = 2mn + m^2 + n^2$$

 \mathbf{or}

$$(m^2 - n^2)^2 = (m + n)^2,$$

whence, m = n + 1.

We have shown earlier that if $a + b = L^2$, then $m = t^2 + 2u^2 - 2tu$ and n = 2tu. Since m = n + 1 if $a^2 = b + c$, then set

$$t^2 - 2tu + 2u^2 = 2tu + 1$$

 \mathbf{or}

$$t^2 - 4tu + 2u^2 - 1 = 0$$

Solve for t using the quadratic equation formula. Then

$$t = 4u \pm \sqrt{16u^2 - 8u^2 + 4}:2$$

 \mathbf{or}

$$t = 2u \pm \sqrt{2u^2 + 1}$$
.

Now $2u^2 + 1$ will be a perfect square when $u = 0, 2, 12, 70, 408, \cdots$, a recurrent series in which $q_1 = 0$, $q_2 = 2$, and $q_n = 6q_{n-1} - q_{n-2}$.

As $u = 0, 2, 12, 70, 408, \cdots$, t correspondingly equals $\pm 1, 4 \pm 3$. $24 \pm 17, 140 \pm 99, 816 \pm 577, \cdots$.

The first six Pythagorean triplets in which $a + b = L^2$ and $a^2 = b + c$ are listed below in abbreviated form, since in these triplets, n = m - 1 and c = B + 1.

B	A	M
40	9	5
1,624	57	29
56,784	337	169
1,938,480	1,969	985
65,906,680	11,481	5,741
2,239,210,120	66,921	33,461

REFERENCE

1. Albert H. Beiler, <u>Recreations in the Theory of Numbers</u>, Dover Publications, Inc., New York, 1964, p. 129

~~~~

86