4. Another special case of (1.7) that is of some interest is obtained by taking all $u_{j}=0$ except u_{p-1} and u_{q-1}. We evidently get
(4.1) $\sum_{r, s=0}^{\infty}\binom{k+p r+q s}{r+s}\binom{r+s}{r} \frac{u^{r} v^{s}}{(1+u+v)^{p r+q s}}=\frac{(1+u+v)^{k+1}}{1-(p-1) u-(q-1) v} \quad(q \neq p)$.

As above, we can assert that (4.1) holds for all k, p, q. This can evidently be extended in an obvious way, thus furnishing extensions of (2.3) involving an arbitrary number of parameters.

We remark that (4.1) is equivalent to

$$
\begin{array}{r}
\sum_{\substack{r+i=m \\
s+j=n}}(-1)^{i+j}\binom{k+p r+q s}{r+s}\binom{k+p r+q s+i+j}{i+j}\binom{r+s}{r}\binom{i+j}{i} \\
=\binom{m+n}{m}(p-1)^{m}(q-1)^{n}, \tag{4.2}
\end{array}
$$

which is itself a special case of (3.1).

REFERENCE

1. G. Pólya and G. Szegö, Aufaben und Lehrsätze aus der Analysis, 1, Berlin, 1925.

LETTER TO THE EDITOR

DAVID ZEITLIN
Minneapolis, Minnesota
In the note by W. R. Spickerman, "A Note on Fibonacci Functions," Fibonacci Quarterly, October, 1970, pp. 397-401, his Theorem 1, p. 397, states that if $f(x)$ is a Fibonacci function, i. e.,

$$
\begin{equation*}
\mathrm{f}(\mathrm{x}+2)=\mathrm{f}(\mathrm{x}+1)+\mathrm{f}(\mathrm{x}) \tag{1}
\end{equation*}
$$

then $\int f(x) d x$ is also a Fibonacci function. Since $\int f(x) d x=h(x)+C$, where C is the arbitrary constant of integration, the above result assumes that $\mathbf{C}=0$. Thus, a formulation of this result in terms of a definite integral seems apropos.
[Continued on page 40.]

