for $k+1>0$. Therefore, by Eq. (5),
for $k+1 \geq q+1>0$, and the proof is complete.

ACKNOWLEDGEMENT

The author wishes to thank Dr. J. Snover and Dr. R. Fray for their aid in the preparation of this paper.

REFERENCES

1. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, London, 1954.
2. John Vinson, "The Relation of the Period Modulo m to the Rank of Apparition of m in the Fibonacci Sequence," Fibonacci Quarterly, Vol. 1, No. 2, April 1963, p. 38.
[Continued from page 34.]
Theorem. Let $f(x)$ be a Fibonacci function (see [1]). Then,
(2)

$$
\int_{i}^{2} f(t) d t=A \quad(A \text { is a constant })
$$

is a necessary and sufficient condition that

$$
\begin{equation*}
g(x)=\int_{0}^{x} f(t) d t+A, \quad g(0)=A \tag{3}
\end{equation*}
$$

also be a Fibonacci function.
Proof. Necessity. If $\mathrm{g}(\mathrm{x})$ is a Fibonacci function, then $\mathrm{g}(\mathrm{x}+2)=$ $\mathrm{g}(\mathrm{x}+1)+\mathrm{g}(\mathrm{x})$. For $\mathrm{x}=0, \mathrm{~g}(2)=\mathrm{g}(1)+\mathrm{g}(0)$, which simplifies to (2).

Sufficiency. By integration, we have

$$
\int_{0}^{x} f(t+2) d t=\int_{0}^{x} f(t+1) d t+\int_{0}^{x} f(t) d t
$$

Let $\mathrm{t}+2=\mathrm{u}$ and $\mathrm{t}+1=\mathrm{v}$ to obtain

$$
\begin{equation*}
\int_{8}^{x+2} f(u) d u=\int_{1}^{x+1} f(v) d v+\int_{0}^{x} f(t) d t \tag{4}
\end{equation*}
$$

Using (3), we obtain from (4), $g(x+2)=g(x+1)+g(x)$, by using (2).

