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Since the network is infinite, we can disregard the addition of one s e c -
tion of each sequence. This allows to determine the resistance between points 
A and B as equal to the resistance between C and D. 

Consequently, 
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After solving this equation, we have * 

r n = r • — ^ - = r • 0 

where </) is the Golden Ratio. 
See also, S. L. Basin, "The Fibonacci Sequence as it Appears in Na-

tu re , " Fibojna^cJ^u^rterij;, Vol. 1, No. 1, p. 53. 
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Editorial Note: The question remains how the students are to find the Fibonacci 
or Lucas representation for the first factor. To find the Fibonacci represen-
tation for 28, we subtract the largest Fibonacci number not exceeding 28, 
namely 21. This leaves 28 - 21 = 7y so our next choice is 5' 28 - 2 1 — 5 
= 2, a Fibonacci number. Thus, 28 = 21 + 5 + 2. This will always yield 
the representation with the least number of summands. 
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