COMBINATIONS, COMPOSITIONS
AND OCCUPANCY PROBLEMS

MORTON ABRAMSON
York University, Downsview, Toronto, Canada

INTRODUCTION

Let r = k be positive integers. By a composition of k into r parts
(an r-composition of k) we mean an ordered sequence of r positive integers

(called the parts of the composition) where sum is k, i.e.,
(1) ag +ag + e +a, =k .
The length of the part a; in (1) is a; i=1,°°", r. Wecall k integers

@) Xp < X < e < X
chosen from {1, 2, +++, n} ak-combination (choice) from n. A part of (2)
is a sequence of consecutive integers not contained in a longer sequence of
consecutive integers. The length of such a part is the number of integers
contained in it. For example, the 6-combination 2, 3, 4, 6, 8, 9 from n >
9 consists of 3 parts (2, 3, 4), (6), and (8, 9) of lengths 3, 1, and 2,
respectively.

A great deal of literature exists on restricted compositions and may be
found in most standard texts, for example [7]. However, there does not
seem to be much literature on restricted combinations, in particular on the
notion of parts with respect to combinations. The notion of parts has been
used in [2] and [6] (in disguised form) as preliminaries to solve certain
permutation problems. A treatment of restricted combinations in itself
seems worthwhile for the following reasons. First, as noted in paragraph 4,
the study of certain occupancy problems (like objects into unlike cells) is
shown to follow immediately from the study of restricted combinations. Al-
though, of course, many occupancy problem results are well known, many of
the results obtained in paragraphs 1and 2 by elementary combinatorial methods
are believed new and might not otherwise be readily obtained. In particular,

theyare relevant to the developmentof tests of randomness in two-dimensional
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arrays. Also, restricted combinations are useful in dealing with certain re-
stricted sequences of Bernoulli trials. In paragraph 1, the simple connec-
tion between restricted compositions and restricted combinations is given.
Although the results contained herein are perhaps of a technical and special-
ized nature, the approach is completely elementary.

Throughout this note, we take

n!
(n) { m - KK 0zk=<n
k —4

0 otherwise

1. Considerthe following six symbols, each denoting the number of com-

positions of k into r parts with further restrictions where indicated.

Cyok,r) , each part of odd length.
Cok,r; w), each part of odd length and each part <w (odd).

List 1
1. Ck,n) ,» ho other restrictions.
2. C(k,r; w) , eachpart <w.
3. Ce(k, r) , each part of even length.
4, Ce(k,r; w), each part of even length and each part <w (even).
5.
6

Expressions for the above numbers are well known and may be obtained
by combinatorial arguments or by considering the appropriate enumerator
generating function in each case, as described by Riordan [7, p. 124].

Corresponding to the 6 restricted combination symbols given in List 1,
we have the following six restricted combination symbols, each denoting the
number of k-combinations from n with exactly r parts andwith further re-

strictions as indicated.

List 2

1. g,k r) ,» ho further restrictions.

2. gln,k; r,w) , each part <w.

ge (n,k; r) , each part of even length.

ge(n,k; r,w), each part of even length and each part <w (even).
goln,k; ) , each part of odd length,

go(n,k; r,w), each part of odd length and each part <w (odd).
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Denote by c! the restricted composition symbol in the ith row of List

1, and gl the ith restricted combination symbol of List 2. Then

(3) g1=(“";+1>cl, i=1,-,6.

To establish (3), note that a k-combination from n can be represented by
n -k symbols 0 and k symbols 1 arranged along a straight line, the
symbol 0 representing an integer not chosen and a symbol 1 representing
an integer chosen. Now place n - k symbols 0 along a straight line form-

ing n -k +1 cells including one before the first zero and one after the last.

()

ways. Now distribute the k symbols 1 into these cells with none empty in

Choose r of these cells in

c! ways. The result follows.
In fact, corresponding to a specified r-composition of k with r parts

we have

e

k-combinations of n consisting of r parts with the same specifications and

clearly

4) g(nsk; bi,b29"' ’bu) = <n - L; N 1) C; b1:b2,"' ,bu_) ’

where g(n,k; by, by, ***,by) denotes the number of k-combinations from n,
C(k; by, by, +++, by) denotes the number of compositions of k, each con-

sisting of exactly b; parts of length i, i =1, 2, .-, n with
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A succession of a k-combination (2) is a pair Xy X 41

1. It is easy to seethat ak-combinationfrom n contains exactly s succes-

s X, with x,, . -x, =
i i i
sions if and only if it contains exactly k - s parts. Hence, instead of de-
scribing the restricted choices by their parts, we may use succession con-

ditions. The numbers

_fn -k + 1}k -1
g(n,k;r)—( r )(r_1>

and g(n,k; k - ) are used in [2] and [6] The numbers

> 8 i=1,:,6
r=1

give the number of combinations with the same restrictions as on the com-
binations counted in gl, i=1, ++, 6, but with the number of parts not

being specified. Of course, the numbers
i
)R

r=1

may also be found by considering the apprepriate generating function.
Recurrence relations and expressions for g(,k; r) and glo,k; r,w)
may be found in [2] and [3]. We consider now some special restricted
combinations.
The number of k-combinations from n, all parts even and <w, is, for

k,w even,

g,k w) 2 g,k Tow) = > <n - 1; " 1)Ce(k,r; w)

r=1 r=1

(5)

ifn-k+t-iYyn-k-+1 _k-iw
Z('”( n-k )( i >’t" 5

i=0
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The number ge(n,k; w) is also the coefficient of xk in the expression

L+x2+xt+eee +xW )n-k+1_ Taking w sufficiently large in (5), the num-

ber of k-combinations from n with all parts even is, for k even

(6) go k) = (n 1;/12{/2) with g (0,0) = 1,

and

(M g () = Z (n v r)

=0
is the number of choices from n with all parts even, [g, () = Fn+1]

In the case of combinations with odd parts only, we have for w > 3 and
w odd,

]

go(n, k5 w) Z go(n,k; r,w)
r=1

SN,

r=1 i=0

(8)

1l

where r = k (mod 2) and

_k+r-iw+1)

t 3

The enumerator generating function of gy(n,k; w) is

n-k+1
L +X+X 400 +x7) .

©® gk k) = (07T

kY
\
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is the number of k-combinations from n, no two consecutive, the lemma of

Kaplansky [5]. Taking w sufficiently large in (8), the number of k-choices
from n, all parts odd, is

(10) gon,k) = Z(k h i B 1)(nk_ fi;il), go,9 =1,
i=0

and the number of choices from n with all parts odd is

(11) g = Y gk .
k=0

2. We also obtain the following relations. For n =2 w + 3,

ge(n,k; w) = gola - 1,k; w) + ge(n - 2,k - 2; w)

(12) - g -w-3,k-w-2w.

For, if a k-choice from n with all parts even and <w (even):
(i) does not contain n, then it is a k-choice from n - 1 with all parts
even and <w, and there are ge(n - 1), k; w) of these:
(ii) does contain n, then it must contain n - 1. Deleting the n - 1 and

n we have a (k-2)-choice from n - 2 (with all parts even and<w

(even)) which does not contain all of n-w-1, n-w, «*+, n- 2,
and there are ge(n—z, k -2; w) - ge(n—w—3, k-w-2;w) of
these.
Of course,
0 k =w+2 =n
(13) gk w) = {g (k) k<w+2=n

ge(n,k) k

IA
S

+
=
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and hence, from (12) and (13),
(14) ge(n,k) = ge(n - 1,k) + ge(n -2, k-2).

The latter is also easily obtained by observing that a k-combination of n
with all parts even either does not contain n or does contain n and neces-
sarily n - 1.

In thecase n = w+3 and k = w+2, (12) becomes (using (7) ),
ge(w+3,w+2;w) = w/2.

This is easily verified directly by observing that the (w + 3)-choices from
1, 2, ***,w+ 3 with all parts even and <w (even) are obtained by removing
from 1, 2, +++, w+ 3 one of the w/2 integers 3, 5, *»+, w + 1.

Let ge(n; w) denote the total number of combinations from n with all
parts even and <w (even). Then

(15) ge(n; w) = Z ge(n,k; w) .
k=0

Using (12) and summing over k we have

ge(n—l;w)+ge(n—2;w)—ge(n-w—3;w), n>w+3

(16) ge(n; W) ={

ge(n—l;w)+ge(n—2;w)—l, n=w+2
Putting n < w+ 1 in (16) or summing over all k in (14) we obtain
(17) g ) = ge(n -1 +g,-2), g,(0) = g = 1.

The numbers ge(n) are Fibonacci numbers. The Fibonacci numbers
arise in other cases of restricted combinations. For example, if f(n) de-
notes the number of combinations from n, no two consecutive, and T(n)
denotes the number of combinations from n with odd elements in odd posi-

tion and even elements in even position, then [7 » p. 17. problem 15].
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ge(n) = fn - 1) = T - 1), n>0,

Also, by considering those combinations which do not contain n, those
combinations which contain n, n - 1 but not n -2, those containing n,
n-1, n-2, n-3 but not n - 4, *+-, etc., we obtain for n > k 2w,

w even, the relation

w/2
(18) ge(n,k; w) = Z ge(n -2r -1,k - 2r; w) .
r=0

In the case of odd parts, a relation comparable to (10) is not readily ob-
tainable. However, for n > k > w, w odd, we have

w+1/2
(19) goln, ksw) = gon - 1,k w) + Z goln - 2r, k - 2r +1; w) .
r=1

The first term on the right side counts those choices not containing n, the
second term those choices containing n but not n - 1, the third term those
choices containing n, n~-1, n-2 butnot n-3, ***, etc., the last term
those choices containing n, n -1, *°+, n-w-+1 but not n -w.

Denote by gy(n; w) the number of combinations from n with all parts
odd and <w (odd). Then, for n > w (odd), summing (19) over k yields

WH/2

(20) goln; w) = ggln - 1; w) + E goln - 2r; w) .
r=1

Taking w sufficiently large in (19), we have for n > k,

(21) goln,k) = gyt - 1,k) + Z goln - 2r, k - 2r + 1)
r=1
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and

0 if k
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-

For example,

20(2,1) = go(1,1) + g4(0,0) =

|
Pt
+
=

1l
Do

Using (21), it is easily seen that

goln - 1) + goln - 2) + goln - 4) + gyl ~ 6) + .00 +gy(1) + 1
for n odd and n > 3,

_ n/2
(22)  goln) = gon - 1) + 2 goln - 2r)  for n even,
r=1

with go(0) = 1 and gyo(1) = 2.

3. In ak-combination from {1, see n} if we consider 1 and n as adja-
cent, then we obtain ""circular" k-combinations from n. For example, the
set {1, 2, 6, 8, 9, 12} is a circular 6-combination from 12 consisting the
3 parts {12, 1, 2}, {6}, {8, 9} of length 3, 1, and 2, respectively. Corres-
ponding to the 6 symbols of List 2, we obtain 6 circular k~combination sym-
bols denoted by hi, i=1,°**, 6. Then

(23) hi=nf_1k(n;k)ci, 0<k<n.

This is easily established by noting the proof for

h(n9 k; I‘,W) = o _I_l K (Il ; k)C(kpr§ w)

in [3]. The special case of r = k and i = 1 in (23) gives

h(n,k; k) =n’fk< ;k) ,
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the number of k-combinations, no two consecutive, of {1, vee n} arranged

in a circle, the lemma of Kaplansky [5]. The numbers

[n/2]
H(n) = Z hin,k; k) ,
k=0

with h(n,0; 0) = 1, have the relation
H() = Ho - 1) + H@n - 2)

for n 2 4 with H@2) = 3 and H(3) = 4. [H(@) = L, the Lucas numbers. |

The relation between g and hi is, of course, given by

- (0 -kK@h-k+1)
i nla -k +1-1)

g hi’ i=1,""-,6, n-k=r.

4. In examining the proof of (3), it is clear that each of the numbers g
and

Zgi’ i=1,+00,6,
r=1

may be interpreted as the number of ways of putting loke objects into n - k

1 unlike cells subject to corresponding conditions. Putting n =m+k-1
we are then placing k like objects into m wunlike cells with the correspond-
ing conditions. For example, g(m +k -1, k; r) is the number of ways of

doing this such that exactly r of the m cells are occupied while

B(m, k; w) = 2 ge(m +k -1,k r, w
r=1

is the number where any occupied cell contains an even number, not greater
than w, of the like objects. Using (18),



1971] AND OCCUPANCY PROBLEMS 235

w/2
Bm, k; w) = Z Bm - 1,k - 2r; w) ,
=0

w even. In particular,

. (k-1
gm + k - 1, k; m) _<m-- 1)

and

Dgm k- 1,k =E<I;1><1;:%> =<m+1'1;—1)

=] r=1

are the well known occupancy formulae [Riordan, 7, p. 92 and p. 102, Prob-
lem 8], the first having none of the m cells empty and the second having no

restriction on the distributions of the k objects. Also, the numbers

gm +k -1, k; 1) and Eg(m+k—1,k;r,w)

r=1

are treated as occupancy problems by Riordan [7, pp. 102-104, Problems 9,
13, and 14].

The restricted combinations also have applications to certain ballot and
random walk problems. For example, in an election between two candidates,
the probability that a certain candidate leads after n votes but does not ob-
tain more than u > 0 runs of votes nor a run of votes of length greater than

w is equal to

u
Z E g, k; r, w)
r=1 k=[n+2/2]

211
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Finally, by noting that for w > 1,

a a. aW _ .
(24) Z(ai>(ai> (aw—l) = Cle, asw

the sum taken over all solutions {(ay, °*°, a,

> -
a, =2 0 o + +oeee A = -
s £ ay + ay a1 k-a_ ,

many of the expressions in [1] are simplified. In particular for w = k (24)
becomes

25) (3:1)(32)"‘ (a?fJ = Ck, a,) = (:k‘_ll)

Upon change of variables and some elementary manipulation, (25) becomes
Theorem 16 of [4],

vn—l _ r!
(r—l) - Zbi'.bzl---bn!
by + 2by + 3bg + e+ +nbn=n

. sae = >
b1+b2+ +bn r, bi_O

for all natural numbers n and r.
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