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INTRODUCTION 

Let r < k be positive integers,, By a composition of k into r parts 
(an r-composition of k) we mean an ordered sequence of r positive integers 
(called the parts of the composition) where sum is k, i. e. , 

(1) ai + a2 + • • • + a r = k . 

The length of the part a. in (1) is a., i = l s
 S8e , re We call k integers 

(2) X l < x2 < . . . < x k 

chosen from { l , 2, • • • , n} a k-combination (choice) from n. A part of (2) 
is a sequence of consecutive integers not contained in a longer sequence of 
consecutive integers. The length of such a part is the number of integers 
contained in it. For example, the 6-combination 2, 3, 4, 6, 8, 9 from n > 
9 consists of 3 parts (2, 3, 4), (6), and (8, 9) of lengths 3, 1, and 2, 
respectively. 

A great deal of literature exists on restricted compositions and may be 
found in most standard texts, for example [7]. However, there does not 
seem to be much literature on restricted combinations, in particular on the 
notion of parts with respect to combinations. The notion of parts has been 
used in [2] and [6] (in disguised form) as preliminaries to solve certain 
permutation problems. A treatment of restricted combinations in itself 
seems worthwhile for the following reasons. Firs t , as noted in paragraph 4, 
the study of certain occupancy problems (like objects into unlike cells) is 
shown to follow immediately from the study of restricted combinations. Al-
though, of course, many occupancy problem results are well known, many of 
the results obtained in paragraphs land 2 by elementary combinatorial methods 
are believed new and might not otherwise be readily obtained. In particular, 
they are relevant to the development of tests of randomness in two-dimensional 
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arrays. Also, restricted combinations are useful in dealing with certain r e -
stricted sequences of Bernoulli t r ials . In paragraph 1, the simple connec-
tion between restricted compositions and restricted combinations is given. 
Although the results contained herein are perhaps of a technical and special-
ized nature, the approach is completely elementary. 

Throughout this note, we take 

0 < k < n / n \ ) (n - k)Sk! 
W " I 0 otherwise 

1. 
2. 
3. 
4. 
5. 
6. 

C(k,r) , 
C(k,r; w) , 
Ce(k,r) , 
C (k,r; w), 

e C0(k,r) , 
C0(k,r; w), 

1. Consider the following six symbols, each denoting the number of com-
positions of k into r parts with further restrictions where indicated. 

List 1 
no other restrictions. 
each part < w. 
each part of even length. 
each part of even length and each part < w (even). 
each part of odd length. 
each part of odd length and each part < w (odd). 

Expressions for the above numbers are well known and may be obtained 
by combinatorial arguments or by considering the appropriate enumerator 
generating function in esich case, as described by Riordan [7, p. 124]. 

Corresponding to the 6 restricted combination symbols given in List 1, 
we have the following six restricted combination symbols, each denoting the 
number of k-combinations from n with exactly r parts and with further r e -
strictions as indicated, 

List 2 

1. g(n,k; r) , no further restrictions. 
2. g(n,k; r,w) ? each part < w. 
3. g (n,k; r) , each part of even length. 

4. g (n,k; r,w), each part of even length and each part < w (even). 

5. go(n,k; r) , each part of odd length. 

6. g0(n,k; r,w), each part of odd length and each part < w (odd). 
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Denote by C the restricted composition symbol in the i row of List 
1, and g the i restricted combination symbol of List 2. Then 

i _ / n - k + l \ i . 
I r J C ? i = 1, •••, 6 . (3) g 

To establish (3), note that a k-combination from n can be represented by 
n - k symbols 0 and k symbols 1 arranged along a straight line* the 
symbol 0 representing an integer not chosen and a symbol 1 representing 
an integer chosen. Now place n - k symbols 0 along a straight line form-
ing n - k + 1 cells including one before the first zero and one after the last. 
Choose r of these cells in 

(--r1) 
ways. Now distribute the k symbols 1 into these cells with none empty in 
C ways. The result follows,, 

In fact? corresponding to a specified r-composition of k with r parts 
we have 

k-combinations of n consisting of r parts with the same specifications and 
clearly 

(4) g(n9k; b l 9 b 2 9 — ? b u ) = | n " £ + M C(k; bl9b29°* • 9bu) , 

where g(n9k; b l 9 b2s • • • , b u ) denotes the number of k-combinations from n, 
C(k; b l 9 b2s • * • , b u ) denotes the number of compositions of k9 each con-
sisting of exactly bi parts of length i, i = l , 2, • • • • ,n with 

Eibi = 
i=l 
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A succession of a k-combination (2) is a pair x., x. - with x. - - x. = 
1. It is easy to see that a k-combination from n contains exactly s succes-
sions if and only if it contains exactly k - s parts. Hence, instead of de-
scribing the restricted choices by their par ts , we may use succession con-
ditions. The numbers 

and g(n,k; k - s) are used in [2] and [6], The numbers 

5 2 g1' i = 1, •••, 6 
r=l 

give the number of combinations with the same restrictions as on the com-
binations counted in g , i = 1, • • • , 6, 
being specified. Of course, the numbers 
binations counted in g , i = 1, ••• , 6, but with the number of parts not 

E*1 
r=l 

may also be found by considering the appropriate generating function. 
Recurrence relations and expressions for g(n,k; r) and g(n,k; r,w) 

may be found in [2] and [3]. We consider now some special restricted 
combinations. 

The number of k-combinations from n, all parts even and < w, i s , for 
k,w even, 

ge(n,k; w) = ] T ge(n,k; r,w) = ^ fn
 r ' * ' * jCe(k,r; w) 

r=l r=l 
(5) 

E y - v i / n - k + t - i X / n - k + lA , k - i w 
^y n - k ){ i j ' t = - 2 -

i=0 
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The number ge(n5k; w) is also the coefficient of x in the expression 
(1 4- x2 + x4 4 . . . + x w ) . Taking w sufficiently large in (5), the num-
ber of k-combinations from n with all parts even is* for k even 

(6) 

and 

ge(n5k) = fn
 k/2 J with g e

( n ? 0 ) = ls 

(7) ge(n) -S(";r) 
r=0 

is the number of choices from n with all parts even. [Se(n) ~~ Fn+1-I 

In the case of combinations with odd parts only9 we have for w > 3 and 
w odd, 

g0(n?k; w) = ] P g0(n?k; r,w) 
r=l 

(8) 

= EEwt)(::!)("-r'). 
r=l i=0 

where r = k (mod 2) and 

f - ^ + r - i(w + 1) 
1 ' 2 

The enumerator generating function of go(n?k; w) is 

n-k+1 
Q W v 

(1 + X + X3 4- . . . 4 X ) 

f 
(9) g0(n,k;k) = I* ~l + 1: 
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is the number of k-combinations from n, no two consecutive, the lemma of 
Kaplansky [5], Taking w sufficiently large in (8), the number of k-choices 
from n, all parts odd, is 

(10) g„(n,k) = £ ( " " I ~ ^ ( V ^ 1 ) ' So(n,9) = 1 . 

and the number of choices from n with all parts odd is 

(ID gb(W = 2 go(n>k) . 
k=0 

2. We also obtain the following relations. For n > w + 3, 

ge(n,k; w) = g0(n - l ,k; w) + ge(n - 2,k - 2; w) 
(12) 

- g (n - w - 3, k - w - 2; w) . 

For, if a k-ehoice from n with all parts even and _< w (even): 
(i) does not contain n, then it is a k-choice from n - 1 with all parts 

even and < w, aind there are g (n - 1), k; w) of these: 
(ii) does contain n, then it must contain n - 1. Deleting the n - 1 and 

n we have a (k~2)-choice from n - 2 (with all parts even a n d ^ w 
(even)) which does not contain all of n - w - 1 , n - w , e * 9 » n - 2 , 
and there are g (n - 2, k - 2; w) - g (n - w - 3, k - w - 2; w) of e e 
these. 

Of course, 

k = w + 2 = n 

(13) ge(n9k; w) = j ge(n,k) k < w + 2 = n 

g (n, k) k < w + 1 , 
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and hence, from (12) and (13), 

(14) ge(n,k) = ge(n - l fk) + ge(n - 2, k-- 2) . 

The latter is also easily obtained by observing that a k-combination of n 
with all parts even either does not contain n or does contain n and neces-
sarily n - 1, 

In the case n = w + 3 and k = w + 2, (12) becomes (using (7) ), 

g (w + 3, w + 2; w) = w/2 . 

This is easily verified directly by observing that the (w + 3)-choices from 
1, 2S

 B •e , w + 3 with all parts even and <w (even) are obtained by removing 
from 1, 2 9 • • • ? w + 3 one of the w/2 integers 39 5, • • • , w + 1* 

Let g (n; w) denote the total number of combinations from n with all 
parts even and <w (even), Then 

(15) ge(n; w) = ^ ge(n9k; w) . 
k=0 

Using (12) and summing over k we have 

!

g (n - 1; w) + g (n - 2; w) - g (n - w - 3; w), n > w + 3 
g^(n - 1; w) + ge(n - 2; w) - 1, n = w + 2 . 

Putting n < w + 1 in (16) or summing over all k in (14) we obtain 

(17) ge(n) = ge(n - 1) + ge(n - 2), ge(0) = ge(l) = 1 . 

The numbers g (n) are Fibonacci numbers* The Fibonacci numbers 
arise in other cases of restricted combinations. For example, if f(n) de-
notes the number of combinations from n, no two consecutive, and T(n) 
denotes the number of combinations from n with odd elements in odd posi-
tion and even elements in even position, then [7 , p. 17. problem 15]9 
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ge(n) = f(n - 1) = T(n - 1), n > 0 . 

Also, by considering those combinations which do not contain n, those 
combinations which contain n, n - 1 but not n - 2, those containing n, 
n - 1, n - 2 , n - 3 but not n - 4, ' • • , etc. , we obtain for n > k > w, 
w even, the relation 

w/2 
(18) ge(n,k; w) = ^jT ge(n - 2r - 1, k - 2r; w) . 

r=0 

In the case of odd par t s , a relation comparable to (10) is not readily ob-
tainable. However, for n > k > w, w odd, we have 

w+1/2 
(19) g0(n, k; w) = g0(n - 1, k; w) + ^ g0(n - 2r , k - 2r + 1; w) . 

r=l 

The first term on the right side counts those choices not containing n, the 
second term those choices containing n but not n - 1, the third term those 
choices containing n, n - 1, n - 2 but not n - 3 , • • • , etc. , the last term 
those choices containing n, n - 1 , • • • , n - w + 1 but not n - w. 

Denote by g0(n; w) the number of combinations from n with all parts 
odd and <w (odd). Then, for n > w (odd), summing (19) over k yields 

w+1/2 
(20) g0(n; w) = g0(n - 1; w) + ^ g0(n - 2r; w) . 

r=l 

Taking w sufficiently large in (19), we have for n > k, 

(21) g0(n,k) = g0(n - l ,k) + ] T g0(n - 2r , k - 2r + 1) 
r=l 
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g0(k*k) = 
0 if k = Q9 29 49 6, 

1 if k = 1, 39 5, 79 

F o r example 5 

g 0 (2 f l ) = g 0 ( l , l ) + g0(0s0) = 1 + 1 = 2 

Using (21) 9 it i s eas i ly seen that 
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(22) g0(n) 

g0(n - 1) + g0(n - 2) + g0(n - 4) + g0(n - 6) + . . . + g0(l) + 1 
n /2 for n odd and n > 39 

g0(n - 1) + J 3 go(n ~ 2 r ) f o r n even, 
r = l 

with g0(0) = 1 and g0(l) = 28 

3. In a k-combinat ion from { l , • •• , n} if we cons ider 1 and n as adja-

c e n t then we obtain " c i r c u l a r " k-combinat ions from n8 F o r example , the 

se t { l , 2 , 6, 8, 99 12} is a c i r c u l a r 6-combination from 12 consis t ing the 

3 p a r t s { l2 9 1, 2 / , ( 6} 9 (8 9 9} of length 39 1, and 2 , respec t ive ly . C o r r e s -

ponding to the 6 symbols of L i s t 29 we obtain 6 c i r c u l a r k-combinat ion s y m -

bols denoted by h , i = 1, * • * , 69 Then 

(23) n i = n / n - k \ i 
n - k V r J 9 0 < k < n 

This i s eas i ly es tab l i shed by noting the proof for 

h(n (n9 k; r 9 w) = ^ - ^ ^ n " k j C ( k 9 r ; w) 

in [ 3 ] . The special c a se of r = k and i = 1 in (23) gives 
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the number of k-combinations, no two consecutive, of {l , • •• , n} arranged 
in a circle, the lemma of Kaplansky [5]. The numbers 

[n/2] 
H(n) = ^ h(n,k; k) , 

k=0 

with h(n,0; 0) = 1, have the relation 

H(n) = H(n - 1) + H(n - 2) 

for n > 4 with H(2) = 3 and H(3) = 4. [H(n) = L , the Lucas numbers. ] 
The relation between g. and h. i s , of course, given by 

= ( n - k ) ( n - k + l) i = 1 . - . . . 6 , n - k > r . 
&i n(n - k + 1 - r) i 

4. In examining the proof of (3), it is clear that each of the numbers g. 
and 

^ g . , i = l f . . . f 6 , 
r=l 

may be interpreted as the number of ways of putting loke objects into n - k 
1 unlike cells subject to corresponding conditions. Putting n = m + k - 1 
we are then placing k like objects into m unlike cells with the correspond-
ing conditions. For example, g(m + k - 1, k; r) is the number of ways of 
doing this such that exactly r of the m cells are occupied while 

B(m, k; w) = ^ J ge(m + k - 1, k; r , w) 
r=l 

is the number where any occupied cell contains an even number, not greater 
than w, of the like objects. Using (18), 
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w/2 
B(m9 k; w) = ^ B(m - 1, k - 2r; w) , 

r=0 

w even. In particular, 

g(m + k - 1, k; m) = 

and 

r=l r=l 

are the well known occupancy formulae [Riordan, 7, p. 92 and p, 102, Prob-
lem 8 ] , the first having none of the m cells empty and the second having no 
restriction on the distributions of the k objects* Also, the numbers 

g(m + k - 1, k; r) and Y j g(m + k - 1, k; r , w) 
r=l 

are treated as occupancy problems by Riordan [7, pp* 102-104, Problems 9, 
13, and 14]. 

The restricted combinations also have applications to certain ballot and 
random walk problems. For example, in an election between two candidates, 
the probability that a certain candidate leads after n votes but does not ob-
tain more than u > 0 runs of votes nor a run of votes of length greater than 
w is equal to 

u 

i C J C g^n? k; r*w* 
r=lk=fn+2/2] 

( m - l ) 

2n 
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Finally, by noting that for w > 1, 

EteXJO-fc)-0*-(24) > : m m - - - L W \= C ( k ) a w ; w ) . 

the sum taken over all solutions (a-j, e • • , a ., ), 
1 w-1 

a. > 0, of a-. + a2 + •e • + a - = k - a 
w- i w 

many of the expressions in [1] are simplified. In particular for w = k (24) 
becomes 

(5)(2)-fe)-ofc^-(4"-10-
Upon change of variables and some elementary manipulation, (25) becomes 
Theorem 16 of [4] , 

/ n - l \ Y ^ rl 
\ r - l) LJ b i tba l—b n ! 

bi .+ 2b2 + 3b3 + • • • + nb = n 
bi + b2 + e • • + b = r , b. > 0 1 * n 3 I 

for all natural numbers n and r . 
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