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1. INTRODUCTION

The following problem is discussed. Let

V:[ = (n: 09 "ty 0)’

N

n-1
where n is a finite positive integer. From V| are generated

Vj+1=(n—i,i,0,"°,0), 1<i<n,
n-2

From V, are generated

n+j=(n"'1"jslaj90"“s\0)’ 1<j<n-1,

n-3

and so on, until the entire list of non-null vectors Vi has been considered.

Suppose the first k (0 < k < n) components from left to right in each
vector Vi are fixed, with k = 0 meaning that none is fixed, and the re-
maining components are arranged from left to right in descending order of
magnitude. The positive integers in each vector Vi form a partition of n
and on arranging the components as above, we obtain what we define as partly

ordered partitions of the integer n.

Let qbk(n) denote the number of distinct non-null vectors V, in the
system generated above in which the first k components arekept fixed. The
primary object of this paper is to derive a recurrence relation for ¢k(n).

Several other interesting results are obtained.

2. IMMEDIATE RESULTS
Let p(n) denote the number of distinct partitions of the positive integer

n. Several values of p(n) can be found in [1], page 35.

*This paper was written while the author was on an N.R.C. postdoctoral
fellowship at the University of Waterloo.
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Let V'i be the vector obtained from Vi i=1,2,-°+) by removing
all zero components of V; and let [V], [V'] denote the set of non-null
vectors Vi’ Vi' » respectively. There is a one-one correspondence between
Vi and Vi' and hence between [V], [V']. We have,

Theorem 1. Poln) = p().

Proof. The components of Vi' constitute a partition of n. Suppose the
components of each vector in [V'] are arranged fromleft to rightin descend-
ing order of magnitude. Then each Vj' (G # i) which has the same com-
ponents as Vi' after rearrangement, hence the distinct vectors in [V'] are

those vectors Vi' whose components are distinct partitions of n, hence

Polm) = p) .
Theorem 2. (pk(n) = zn"l, k=n or n-1, n=1).
Proof. We show first that ¢n_1(n) = gbn(n).
vt = (13 1: R 1)

i et S

n

is the only vector in [V'] which has more than n - 1 components, hence
keeping n - 1 components fixed in [V'] is equivalent to keeping all n com-
ponents fixed; that is,

0. 1) = ¢ () .

Now the system [V'] contains all the compositions of the integer n,
hence by a result of [2, page 124], ¢ (@) = 201,
This proves the theorem.

We come now to the more significant results.

3. MAIN RESULTS
Theorem 3. ¢k;(n) = ¢k(n-1) +¢k_1(n - 1), k= 1).
Proof. ¢k(n) is obtained from ¢k_1(r), 1 <r=<n-1, in the follow-
ing way:
Let [U] be the system of distinct non-null vectors generated for a par-

ticular value of r (1 < r < n - 1) in which the first k -1 components in
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each vector are fixed and the other components are arranged in descending
order. Let

U = (uyg, uy, *°*, Uyp) [U] .
Define

Ul

-1, uy, up, **, up) .

There is a.one-one correspondence between U, U' and as U runs through
the vectors in [U] we obtain a system of distinct non-null vectors in which
the non-zero components sum to n and the first k components are fixed.
As r runs through all integral values from 1 to n -1 we obtain collect-

ively all the distinct non-null vectors in (Z)k(n) except

V = (o, 0, 0, 22, 0),

n-1
hence,
n-1
9@ =1+ ¢ @
r=1
n+2
=1+ 29 @) +¢_ -1,
r=1

0 -1 +9 (-1 .

Using this result and the values for ¢y(n) which are to be taken as initial
values we obtain Table 1 for 1 < n < 10. Wetake ¢((0) = 0, and for k>
n and finite we may also put ¢k(n) = ¢n(n) since this simply entails expand-
ing the vectors in [V] by adding a further k -n zero components on the
right in each vector. These values of ¢k(n) fall below the leading diagonal
in the table and are omitted.

We note also that the binomial coefficients also satisfy a similar recur-

rence relation.
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¢0 0 1 2
o4
02 2
3
Oy
05
g
Oy
g

Here ¢i stands for qbi(n) 0<icx<

Corollary 1.

L

@ o oo =1 o

Table 1

5 6

7 11
12 18
15 27
16 31
16 32
16 32
32

¢n—2 ) =

Proof. By Theorem 3,

n-3
2 0y
=0

that is,

by Theorem 2, hence,

By @)

A GY

15
30
46
58
63
64
64
64

22
45
76
104
121
127
128
128
128

n=>2).

n-3

s=0

n-2
- $o(2) = Z 25 |
=1

26" - 1) + o)

2

n-1

H

30

67
121
180
225
248
255
256
256

10

42

97
188
301
405
473
503
511
512

[May

s) - ¢n—3-s(n -s-1) = Z(Z)n_z_s(n -s-1),
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The following result can also be obtained by using similar difference

methods.

Corollary 2. n = ot _ 1, n=3.
__~._...l_ n-3

Before we state a general expression for qbn_j(n), 3Xj<n-1, we
prove the following lemmas.

Lemma 1.
n-j-1
Z(J—?;+r> =(nn—3?1>’ 3<j<n-1, n>4,
r=0
Proof.
n-j-1 n-j-1
n-3+r\ _ j-2+r j-3+r
(i) - X (i) (R e
=0 r=1
n-j -
SRR
_ n - 3
n-j-1
Lemma 2.
q-2 g-3
p + r\,9-r _ p+r + 1} ,g-r-1 pt+taqg-1
)3 (SIS 3 (- PR L PEES
r=0 : =0
Proof.

q-2 .
Z(p+r>2q—r=(p+l>2q—l+ {(p+1>+(p+1ﬂzq—1
T 0 0 1

r=0
q-2
p + r\,9-r ,
()
r=2

(e ey [(or) - (27
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q-2

p+r\,a-r
+Z( T )2 ’
r=3

q-3

" (rr)Eealins)

r q-2
r=0
Theorem 4.
n-j-1 i
- j -3+ r\,n-j-r+l n-r-1
q)n-j(n) Z ( r )2 +Z( j-r %@

=0 r=3

Proof, When j = 3, the right-hand side is

n-4
2 211—1‘—2 + ¢0 3)
r=0
=21 443
- 2n—l -1

By Corollary 2 above, theorem is true for j = 3. Assuming it is true for
j, we have, by Theorem 3,

n-j-2 n-j-2
Z (‘7)n—j—s—1(n -8 - ‘pn—j-s—z(n -s-1) = Z ‘i)n--j—s—l(n -s-1,

=0 s=0

n-j-2 /n-j-s-2

i
S (D3 () EnatS vl (oS-l THC) I

s=0 r=0 r=3



1971] ON PARTLY ORDERED PARTITIONS OF A POSITIVE INTEGER 335

n-j-2 n-j-r-2 n-j-2
= j -3 +ryn-j-r n-r-s-2
2l R C D S Z¢o<r>z( SRR
r=0 s=0
n-j-2 i
j- 3+ -j=- -1-
= Z (J : I‘)(zn;lr+1_4)+Z(IJ1 i+i>¢0(r) » by Lemma 1,
r=0 r=3
n-j-1 n-j-2
_ j-3+r\ n-j-r+l n-4 j-3+r
Z(m)Eraanit) - X (0
=0 =0
j 1
n-r-1\,
DN RS TICE
r=
n-j-2
> j-24r\gnejor, ,f n-8\_ {1 n-4\ ,( n-4
r / n-j-1 n-j-1 n-j-2
=0

by Lemmas 1 and 2,

n-j-2

ST (3 e
r=0 r=3
Hence,
n-j-2
‘Pn_]-_l(n): Z (J-2+r)njr+z< r+1)¢0(r)+¢0(r+1),
r=0
n-j-2 1

N

j-i+r>2n-j—r+2 <?:£;i) o (x) .

r=0 r=3

Thus, if true for j, also true for j + 1. This proves the theorem.
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This proves the theorem.

Further reductions on the result of Lemma 2 give the following:

Theorem 5.
q-2 q-2
p + r\,9-r _ p+ag-1
S(Pr)ET e (P
=0 r=0

Theorem 4 can now be stated in the following way:
Lemma 3.

n-j-1 j

Opy@ = 4 > (n;3>+2<n—jf;1>¢o(1‘)-

r=0 =3

Two special cases which are easily obtained from Lemma 3 are stated in

Theorem 6.
o+l
¢ n-3 2 n-r-1
n-1 _ oh-2 S
—Z—(H)—Z +2 n-3 +Z n+1_ o (x), n odd (25),
2 =3 2
n32

(P 2 n-r-1

-2 n-2

r;_ @ = 2 +Z N+ 2 Po(r), n even (4).

The author is indebted to R. N. Burns of the University of Waterloo for
his many helpful suggestions.
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