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1. INTRODUCTION 

The following problem is discussed,, Let 

Vi = (n9 0 ^ ^ 5 0), 
n-1 

where n is a finite positive integer. From "Vj are generated 

Vi + 1 = (n - if if 0 ^ ^ , 0), 1 < i < n . 
n-2 

From V2 are generated 

Vn+. = (Q - 1 - j , 1, j , 0 ^ - j , 0 ) , 1 < j < n - 1 , 
n-3 

and so ons until the entire list of non-null vectors V. has been considered* 
Suppose the first k (0 < k < n) components from left to right in each 

vector V. are fixed, with k = 0 meaning that none is fixed, and the r e -
maining components are arranged from left to right in descending order of 
magnitude* The positive integers in each vector V. form a partition of n 
and on arranging the components as above, we obtain what we define as partly 
ordered partitions of the integer ne 

Let </), (n) denote the number of distinct non-null vectors V. in the 
system generated above in which the first k components are kept fixed. The 
primary object of this paper is to derive a recurrence relation for </>. (n)9 

Several other interesting results are obtained* 

2e IMMEDIATE RESULTS 
Let p(n) denote the number of distinct partitions of the positive integer 

n. Several values of p(n) can be found in [1] , page 35* 

*This paper was written while the author was on an NeR.C9 postdoctoral 
fellowship at the University of Waterloo. 
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Let VI be the vector obtained from V. (i = 1, 2, •e •) by removing 
all zero components of V. and let [V], [V!] denote the set of non-null 
vectors V., V.?, respectively. There is a one-one correspondence between 
V. and V.f and hence between [V], [V1]. We have, 

Theorem 1. $o<n) = P(n) • 
Proof, The components of V.f constitute a partition of n. Suppose the 

components of each vector in [V? ] are arranged from left to right in descend-
ing order of magnitude. Then each V.? (j f i) which has the same com-
ponents as V.f after rearrangement, hence the distinct vectors in [V! ] are 
those vectors V.? whose components are distinct partitions of n, hence 

0o(n) = p(n) . 

n-1 
Theorem 2. 4 (n) = 2 , k = n or n - 1 , (n > 1) . 
Proof. We show first that </> _-(n) = $ (n). 

n 

is the only vector in [V?] which has more than n - 1 components, hence 
keeping n - 1 components fixed in [V! ] is equivalent to keeping all n com-
ponents fixed; that i s , 

^ n - l ( n ) = ^n( n ) 8 

Now the system [Vf] contains all the compositions of the integer n, 
hence by a result of [2, page 124], 0 (n) = 2 ~ . 

This proves the theorem. 
We come now to the more significant results. 

3. MAIN RESULTS 
Theorem 3. 0 (n) = 0 k ( n - l ) + 0 k - 1 < n " D* (k > 1) . 
Proof. 0k(n) is obtained from 0 k i (r)» 1 5 r < n - 1, in the follow-

ing way: 
Let [U] be the system of distinct non-null vectors generated for a par-

ticular value of r (1 < r < n - 1) in which the first k - 1 components in 
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each vector are fixed and the other components are arranged in descending 
order. Let 

Define 

U = (ui9 u 2 ? °°° 9 u r ) [U] 

Uf = (n - r s u1? u2, °°° , u r ) . 

There is a. one-one correspondence between Us Uf and as U runs through 
the vectors in [U] we obtain a system of distinct non-null vectors in which 
the non-zero components sum to n and the first k components are fixed, 
As r runs through all integral values from 1 to n - 1 we obtain collect-
ively all the distinct non-null vectors in 4 (n ) except 

v = (n> °->„°» mJJ » ° ) » 
n-1 

hence, 

n-1 

r=l 
n+2 

i K-i<A = 1 1 + 2 ^-i(r) I +^k- i ( n - i } > 

= ^>k(n - 1) + 0k - 1(t i - 1) -

Using this result and the values for 0o(n) which are to be taken as initial 
values we obtain Table 1 for 1 < n < 10. We take 0O(O) = 05 and for k> 
n and finite we may also put </). (n) = $ (n) since this simply entails expand-

K n 
ing the vectors in [V] by adding a further k - n zero components on the 
right in each vector. These values of $k(n) fall below the leading diagonal 
in the table and are omitted. 

we note also that the binomial coefficients also satisfy a similar recur-
rence relation. 
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Table 1 

n 0 10 

02 
03 
04 
05 
06 
07 
08 

1 2 

1 2 

2 

3 

4 

4 

4 

5 

7 

8 

8 

8 

7 

12 

15 

16 

16 

16 

11 

18 

27 

31 

32 

32 

32 

15 

30 

46 

58 

63 

64 

64 

64 

22 

45 

76 

104 

121 

127 

128 

128 

128 

30 

67 

121 

180 

225 

248 

255 

256 

256 

42 

97 

188 

301 

405 

473 

503 

511 

512 

Here 0. stands for 0.(n) (0 < i < 8). 

Corollary le 

Proof. By Theorem 3, 

0n„2(n) = 2" i i -1 (n > 2) 

n-3 n-3 

E ^n-2-s(n " s ) - ^n-3-s(n - * - « > = E ^n-2-s (n " s ' 1] • 
s=0 s=0 

that is j 

n-2 
^n-2 ( n ) - *o<2) = ^ 2 S , 

s=l 

by Theorem 2, hence, 

^n-2 V - 2 W = 2(2 - l ) + 0o(2) , 

= 2 ,'ri-l 
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The following result can also be obtained by using similar difference 
methods. 

0n„3(n) = 211""1 - 1, n > 3 Corollary 2e 

Before we state a general expression for 0 _.(n), 3 < j < n - 1, we 
prove the following lemmas. 

Lemma 1* 

n-j-1 

EC"*/1)-(-A)- 3 < j < n - 19 n > 4 
r=0 

Proof, 
n- j-1 _ 

r=0 r=l L -J 

= ( n - j - l ) 

= (n - j - l ) 

+ 1 

= 1 + 1 

Lemma 2* 

E (p: y - r = E (p + •+ y-*-1+4(p tii1).** 
r=0 r=0 

Proofs 

z (p; YT - (p J y-1 + [(p 1 0 + (* x O]2"-1 
r=0 ' •-

q-2 
+ E (P r r Vq"r ' 

r=2 ^ ' 

,q-2 
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q-2 

E(P+rr): 

r=3 

Theorem 4. 

•0 .(n) = 

q-3 

r=0 

n- j -1 

E 
r=0 

Proof. When j = 

C 

0 

3, 

+ r + 
r 

- 3 + 
r 

i $ j 

iy-r-1
 + 

r \ 2 n - j - r+ l 

< n - 1, 

the right-hand side 

«h 

j 
+ E 

r=3 
n > 4 

5 i s 

Eh:;1) 00 (r) , 

n-4 
2 2n-r-2

+0o(3) 
r=0 

= 211-1 - 4 + 3 

= 2 n - 1 - l 

By Corollary 2 above, theorem is true for j = 3. Assuming it is true for 
j , we have, by Theorem 3, 

n-j-2 n-j-2 

2 ( f e - j - s - l ( n - s ) - V j - s - 2 ( n - S - 1 ) ) = S 0n- j - s - l ( n " S " 1 } ' 
S=0 S=0 

n-j-2 /n - j - s -2 j \ 

• E E (j-rr>n-j-r-s
+E n"i:r>« . 

s=0 \ r=0 r=3 N / 



1971] ON PARTLY ORDERED PARTITIONS OF A POSITIVE INTEGER 335 
n-j-2 n- j - r -2 j n-j-2 

r=0 s=0 r=3 s=0 X 

= n £ (3 " r + ^ ^ ^ - 4) * E ( f I J ; J V W . by Lemma 1, 
r=0 V. 7 r = 3 V 7 

-"z\i"rO^,""1-4i(n°i"-i)+sa(J";+r){ 
r=0 r=0 } 

• S ( " : ; ; 0 * , w -
r=3 

• ° E (i-rr>"-)-r-(»-j-3
1)-|(»-^-4

1) n«-.r-)i 

+ i : ft:';})••"• 
r=3 x 

by Lemmas 1 and 2, 

r=0 X ' r = 3 X ' 

Hence, 

W w • "s C"'+r) 2n_)"r + S (": r; 0*'w + * ° t r + u • 
r=0 r=3 X 

n-j-2 j+1 

- E(J"rr)^J"r + E(°:r;i)*w-
r=0 r=3 X 7 

Thus? if true for j , also true for j + 1. This proves the theorem. 
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This proves the theorem. 
Further reductions on the result of Lemma 2 give the following: 
Theorem 5. 

r=0 ' r=0 ^ ' 

Theorem 4 can now be stated in the following way: 
Lemma 3, 

* H « - « , , £ ( , , ; 8 ) + 5 : ( , , ; - * ; 1 ) * « -
r=0 r=3 

Two special cases which are easily obtained from Lemma 3 are stated in 
Theorem 6. 

n+1 
0 / n - 3 \ 2 / n - r - l \ 

I T (n) = 2n~2
 + 2 n . 3 + S I n + 1 P(r)> n ° d d (~5) • 

*n-2 , v ftn-2 

r = 3 \ 2 

n+2 
2 / n - r - 1 

r 

(n) = 2 ^ + E L i 2 p<>(r)> n even ^4) 
2 

r = 3 \ 2 ~ r 

The author is indebted to R. N. Burns of the University of Waterloo for 
his many helpful suggestions. 
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