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1. The sequences of integers such that each term Is equal to the sum of 
both preceding are infinite in number. Two of these have been especially in-
vestigated: the Fibonacci sequence, conceived at the beginning of the 13th 
Century by the mathematician Leonardo of Pisa, better known as Fibonacci, 
the Lucas sequence pointed out at the end of the last century by the French 
mathematician Lucas and named for him. Both sequences gave rise to many 
works which showed manifold properties of these sequences and conduced to 
strides in the numbers theory. 

The present research work doesnft mean to go back on these questions, 
but it tends to make known how the use of the hyperbolic functions make much 
easier general feature works on the linear sequences defined at the beginning 
of the present paper, and from which Fibonacci and Lucas sequences are 
only special cases . 1 The author has recently had recourse to these functions 
in a very different field, that of mathematic geography, and he has been the 
first to show that their utilization simplified notably the determination of the 
conformal representations of the sphere or ellipsoide on the plane, that it 
lightened very much the algebraic expression of these representations and 
that it helped to state precisely the relationships existing between the differ-
ent systems. 

2. The sequences concerned are defined by the general relation: 

(1) z = z 1 + ZM Q , 
n n-1 n-2 

in which z indicates the term of rank n. 

^ u c a s developed a very different generalization of both sequences. It Will 
be reminded in paragraph 6* 
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Each sequence can therefore be cha rac t e r i zed by two a r b i t r a r y in tegers 

which we call z0 and Zj and which don't s e e m , a p r i o r i , to be pa r t of the 

sequence because they a r e not squar ing with the definition (1); but, ac tual ly , 

they, too , en t e r into the sequence s ince i t i s poss ib le to extend it without 

end, in the opposite d i rec t ion , s t a r t ing from the a r b i t r a r y t e r m s z0 and zl e 

3. The shape of the re la t ion (1) between the success ive t e r m s of the 

sequences sugges ts immedia te ly the use of c i r c u l a r o r hyperbolic l ines (func-

tions) for express ing each t e r m according to i ts place in the sequence. As it 

i s a question of indefinitely inc reas ing sequences , it i s obviously suitable to 

have r e c o u r s e to hyperbolic l ines . 

Let us wr i t e the re la t ion (1) in the form: 

(2) z ,- - z - = z , 
x n+1 n - 1 n 

and designate by m , X, and 0 , th ree constants to fix u l t e r io r ly in t e r m s of 

sequence ' s data. Let us se t bes ides : e i the r 

z ,- = mshA(n + 0 + 1) and z - = mshA(n + 6 - 1 ) 
n+i ' n - i ' 

o r 

z - = mchA(n + 0 + 1) and z - = mehA(n + (j> - 1). 

Then the re la t ion (2) conduces to: 

z = 2mshAchA(n + 0) 

for the f i r s t c a s e , o r 

z = 2mshAshA(n + 0) 

for the second case , 

Le t us define now the p a r a m e t e r A by shA = 1/2, from which i t comes 

chA = N/5 /2 and 
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i e = ——^ J (golden number) 

Both expressions of z become simplified and it is obvious moreover 
that the terms of the sequence can be represented alternatively by hyperbolic 
sines and cosines 

(2 bis) z = m chX(n + $) 

or 

z = m shA(n + 0) 

ors generally, speaking 

A(n-M/>) _L Q"Mn-H/>) ± e e z = m — 
n ^ 

The parameters m and </> are easily obtained with the help of initial 
data z0 and zl9 but it is obviously necessary to consider two cases accord-
ing as one adopts for z0, a hyperbolic sine or cosine, and the inverse for 
zj. In the first case, the terms with an even index agree with hyperbolic 
sines, those with an odd index are represented by cosines* In the second case, 
the inverse occurs. To make a distinction between both cases , we shall write: 

A =. Zj_ + z0e B = Zj - z0e 

from whats taking the value of A into consideration, 

A - B = 2z0 chA A + B = 2ZJL - z0 AB = z\ - z0£| - ZQ . 

Suppose, now, that one intends to adopt hyperbolic sines for the terms 
with an even index. It comes: 

A - B m shA0 = z0 = 2 , mchA($4- 1) = z1? 
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from what 

m chA0 = ^ 
z i - zo siiA A _ B 

2 chX 
and therefore, 

me ^ = A/chX m e " ^ = B/chX m = N/AB/CIIA eA^ = \ / $ 7 B 

B must so be positive, and we have consequently: 

zt > z0 e 

either 

Zi > z0 T-^-

2zt - z0 > z0 \/5 

A parallel argument shows that if a hyperbolic cosine is adopted for the 
terms with an even index, -B takes the place of B in the formulas of m 
and of e , and that consequently, B must be negative and 

. 1 + \/5 
Zi < Z0 s 

For example, the sequences defined by z0 = 3 and zt = 1, or by z0 = 
2 and zA = 3 must be represented by 

z = m chA(n + 0) 

when n is even, whereas a hyperbolic sine is necessary for the sequence 
defined by z0 = 1 and z t = 2. 
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Using the formulas of m and , we get the general expression 

(1) zn = - ^ [ A e ^ - B ( - e ^ ) n ] 

Before going further in the study of the sequences, we deal first with 
the special case of (j> integer; then, this parameter can be taken cipher, 
which is equivalent to shifting the number of the te rms, the n term r e -
ceiving the index n - 1. The condition 0 = 0 produces A = B if B is 
positive, A = -B in the opposite case. Both cases correspond respectively 
to the Lucas and Fibonacci sequences* 

The knowledge of both these sequences makes it much easier to set up 
formulas of the general sequence z* We add, besides, a special sequence 
G which also appears in the relations. 

4. The Fibonacci Sequence* For this sequence, . A = B, and conse-
quently, z0 = 0 and zA = A. Hence, for the general term, 

S - ok [«* - <-•'» 1 • 

As no motive exists for keeping the same factor zA in all terms of the 
sequence, we can take zA = 1. Therefore, we have, with the symbol F in-
stead of z: 

(3) F = S h X n 

if n is even, 

"n chX 

v = c h A n 

n chX 

if n is odd. 

1Substituting to the quantities A and B in this formula, their expressions 
in the terms of z0 and z4, one may obtain a relation which is no 0theT than 
the relation (5), given further and then more directly obtained, 
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It would be possible to more quickly obtain these relations by departing 
from the usual definition z0 = 09 zj = 1, and writing 

m shA0 = 0 m chA( 0 + 1) = 1 , 

relations giving 0 = 0 and m = 1/chA. 
As 

A 1 + \[E -A 1 - N/5 
e = — 7 T — — - e = •—•—s 

the expressions of the general term become: 

F -. - - [(Ĥ T - (^n 
or, more symmetrically, 

F 
n 

. (H*r - (^° 
1 + \/5 1 - N/5 

and numerically, 

F = a U 6 1 8 - ' ) n - (-0,618 - - P 1 1 

n 2 , 2 3 6 - . . 

As shkx, with k integer, is always divisible by shx, and as chkx is 
divisible by chx when k is odd, the term F, is always divisible by F , 
which is also shown by the general formula.. Specifically, the even terms 
have an index divisible by 3; the terms divisible by 3 have an index divisible 
by 4; the terms divisible by 5 have an index divisible by 5; and so on. 

Likewise, when n becomes very great, which makes thAn very near 
from the unity, the ratio of consecutive terms draws near to chA + shA, Le„ , 
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eX = l + j£ = J 6 1 8 . . . < 

So the successive terms of the Fibonacci sequence are: 

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 

F = 0 1 1 2 3 5 8 13 21 34 55 89 144 n 

| j ^ = 0 1 3 8 21 55 144 

chAn - n r 
chX 13 34 89 

5. The Lucas Sequence* We have seen that, for this sequence? A = - B , 
from which z0 = A/chX and zt = z0/2§ and* for the general term5 using 
the symbol L for the terms of the sequence, and taking zt = 1, as in the 
Fibonacci sequence9 and for the same reasons 

L - e + n <-e-»" - (H^)" * ( V ) ' 
and we have 

(4) L = 2 chAn 
n 

for n even? and 

L = 2 shAn 
n 

for n odd* It would also be possible to get these expressions directly from 
the relations 

m chA0 = z0 = 2 

and 
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m shA ($ + 1) = zt = 1 

which give (f) = 0 and m = 2. 
If one considers the product kn, the term L. is divisible by L 

when k is odd. Particularly, the terms having an index odd multiple of 3 
are divisible by 4, whereas, as ch6X is equal to 9, odd integer, the terms 
having for index a multiple of 6 and consequently for expression 2ch6An, are 
divisible by 2, and by no other power of this number, whatever the eveness 
of n may be. 

The Lucas sequence, therefore, is as follows: 

n = • 0 1 2 3 4 5 6 7 8 9 10 11 12 • • • 

L = 2 1 3 4 7 11 18 29 47 76 123 199 312 ... 322 n 

2ch n = 2 3 7 18 47 123 312 • • • 322 

2sh n = 1 4 11 29 76 199 

6. The previous expressions of F and L in terms of 

1 + N/5 , 1 - \/5 — — _ and ?j 

are connected with more general results set up by Edouard Lucas, who con-
siders the functions U and V defined by 

n n J 

n . n 
TT = a " 

n a - b 

and 

V = a + b n 
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Lucas shows that U = U V (a s i m i l a r formula is given fur ther in p a r a -zin n n 
graph 9) and that , on the o ther hand, he can wr i t e U = 2 ain n and V = & * n n 
2 cos n; for n r e a l , the c i r c u l a r t r igonometr ic l ines fit, w h e r e a s for n 

imag ina ry , one mus t use hyperbol ic functions. 
It is also in te res t ing to cons ider the quadra t ic equation having the roots 

a and b„ In the special c a se where U and V a g r e e , r e spec t ive ly , with 

F and L , this equation Is x2 - x - 1 = G, n n ^ 
7. Connected Sequences, One can eas i ly se t up the relat ion: 

(5) z = z A F - + z - F 
' n 0 n - 1 1 n 

pe rmi t t ing to deal with all sequences defined by re la t ion (1) a s soon a s the 

Fibonacci sequence has been Investigated. 

We shall cons ider now that th is re la t ion (5) defined a function G (z, F) 

of both s equences , and we shal l sp r ead It to any sequences y and z , wri t ing: 

G {y,z) = zAy - + z - y 
n\y r 0 J n - l l J n 

Through the re la t ion (5), one shows without difficulty that G (y,z) = 

G (z ,y ) , and consequent ly, 

G (y,z) = yAz - + y - z 
n J J 0 n - 1 J l n 

More genera l ly , and if q i s any in t ege r , we find m o r e : 

G n (y ,z ) = z ^ ^ + \+1Y^q • 

One can also show that G = G , + G„ „, and the re fore that the s e -
n n—x n—u 

quence G is a l i nea r sequence of the family (1) concerned and has 

ing t e r m s : 

Go = yizo + 2 ^ 0 - y0z0 

and 
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Gi = y0z0 + yiZi . 

With the symbols of paragraph 3, we can show that, on the other hand, 

A(y,z) = A(y)A(z) m(y,z) = m(y)m(z)chA 

B(y,z) - B(y)B(z) 0(y,s) = </>(y) + 0(z) 

hence, 

(5 bis) G (y,z) = m(y)m(z) chXshA[n + 0(y) +-0(z)] 

or 

Gn(y,z) = m(y)m(z) chXchA[n + 0(y) + $(z)] , 

accordingly as to whether Gj is superior to 

n 1 + N/5 
G 0 9 — 

We have first, G (z,F) = z . The sequence G (z,L) affords a special 
interest because 

G (z,L) = LAz - + L-z = 2 z -, + z = z - + z ,-nN 9 0 n-1 1 n n-1 n n-1 n+1 

which gives, in particular: 

<6> L n = G n < L ' F ) = F n - 1 + F n + 1 ' 

When the sequences y and z are the same, one may obtain, using 
G (z) instead of G (z, z), n n 

G (z) = zAz - + z-z = z z - + z ,-z nv ' 0 n-1 I n q n-q-1 q+1 n-q 

In this sequence, 
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G0(z) = z0(2z.| - z0) 

Gi(z) = z2
0 + z\ 

G2(z) = Zi(2z0 + zj) . 

We find also: 

(6 bis) G (z) = m2chAchA (n + 20) or m2chA shA (n + 20) 

according to the value of the ratio Gj /G0 . 
Consequently5 through these relations, 

Gn(F) = F n 

(7) G (L) = 5F 
n n 

z G (z,L) = G0 (z) . 
n nx 9 2nx 

Likewise, the sequence z can be connected to the same sequence z 
shifted by an integer P* As m(z) = m(z+ ) and 

(z,z, ) = (z) + (z, ) , 
' +p +p 

It comes 

G (z,z ) = m2chAchA(n + p +• 20) If n and p have different 
,„ . . v

 n p eveness 
(7 bis) 

G (z,z ) = m2chAshA(n + p + 20) if n and p have the same 
n P eveness 

Obviously 5 the terms of the connected sequences G must be, like those of 
the other linear sequences, alternatively a hyperbolic sine and a hyperbolic 
cosine* 

8* Sundry Relations* Having resort to formulas interconnecting hyper-
bolic lines 9 we can set up many relations between the terms of the linear 
sequences of type (1). 

(a) Formulas of addition and subtraction. One finds 
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!

z L if p is even 

n p ^ 
( z n - l + Vn)Fp if P i s o d d 

!
(z . + z , - )F if p is even 

n-1 n+1 p ^ 
z L if p is odd 

These relations can be condensed into the following form: 

z _, + (-1)P z = z L 
n+p n-p n p 

z _ (_i)P z = (z + z ) F . 
I n+p n-p n+1 n-1 p 

One can write them more symmetrically: 

!

z _,_ +(-l)Pz = L G (z,F) / = G (L,F)G (z,F) 

n+p n-p p n ' 1 p nv 

• W - < - ^ V p - ' p V - M "•*»*""•* I - Gp(F,F,G„(z,L, 

(8) 

Each of the above mentioned sums and differences concerns both terms 
z and z of which the indices are separated from 2p which is an 
even integer. 

When the difference , which we call a, between the indices q + a and 
q of the considered terms is odd, i. e. , when we t ry to compute the sum 
z + z or the difference z - z , the problem is much more difficult q+a a q+a a 
because the terms are expressed, one by a hyperbolic cosine, the other by a 
sine, and there is no general formula for the addition or subtraction of both 
lines. Then, it is possible, to make the investigation easier , to pass through 
the Fibonacci sequence by introducing the following auxiliary linear sequences, 
of which the number is unlimited and which are only interesting when a is 
odd. We use the letters x and y to denominate these sequences: 

x (a) = F ^ + F 
q q+a q 

y (a) = F ^ - F J q q+a q 

Particularly: 
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Xq(1) = Fq+2 V W = F q-1 

Xq(3) = 2Fq+2 V 3 ) = 2Vl 
Xq( 5 ) = 5 F q + l + 4 F q y q ( 5 ) = 5 F q+ l + 2 F q ' 

Generally speaking f we have 

F , = F -F + F F ,-q+a a-1 q a q+1 

Hence j with the help of (5), 

V a " Zq = z 0 X q - l ( a ) + z l X q ( a ) = G
ql*'\W • 

In the same way9 

Zq+z ~ \ = Gq[z>yq(a)] 

(b) Sums or differences of Squares, Using the sums and differences 
just set up9 one finds: 

z2 - z2 = G , (z)F if p and q have the same eveness 
( 9 ) p q p+q p-q 

z2 + z2 = G , (z)F if p and q have different eveness, 
p q p+q p-q 

and? by condensing these relations: 

z2 „ (™i)P^z2 = G M (z)F 
P q p+q p-q 

The difference of the squares, when p - q is odd9 can be written: 

ZP " Zq = G q [ Z | X q ( P " q ) ] Q q [ Z 9 y q ( p " q ) ] 

but this way does not lend itself to practical applications. Likewise, for the 
sum of the squares when p - q is even* 
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(c) Sums of the terms of Linear Sequences. One easily finds by recur-
rence the following relation which is suitable to all linear sequences defined 
by formula (1): 

i=q 

Z = } z. = z l0 - z ,-
p ? q Z ^ i q+2 p+1 

i=P 

We have, therefore, in the case of the first n + 1 te rms , from p = 0 to 
q = n: 

Z = z l 0 - z-
n n+2 1 

In addition to this general methods there a re , for two special cases-, 
other methods making possible, for instance, to get checking of the 
computation: 

In one of the cases, the number n + 1 of the implicated terms is a mul-
tiple of 4 and one gets 

F ,- / z i r z , , \ F ,., G 
_ n+1 - - " 

Z n " ~ 

/Zn+5 _,_ V l \ n+1 n+3 , _, 

The second special case, which looks more interesting, concerns a num-
ber of terms which are multiples of 2 and of no other power of 2. In this 
case, n - 1 is a multiple of 4 and we have, consequently, 

z =
 Ln+1 Zn+3 

n 2 2 

i9 ee , the sum of the n + 1 implicated terms is equal to the product of the 
(n+5)/2 term of the sequence (index (n+3)/2), by the (n+3)/2 term of 
the Lucas sequence (index (n + l)/2). There i s , therefore, equality between 
the sum of the first six term (n = 5) and the product of the fifth term by 4: 
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the sum of the first 10 terms (n = 9) and the product of the 7th term by 11, 
the sum of the first 14 terms (n = 13) and the product of the 9th term by 29 , 
the sum of the first 18 terms (n = 17) and the product of the 11th term by 769 

and so on. 
(d) Sums of the two-by-two terms. Let us add first the (n/2) + 1 terms 

with an even index 5 from 0 to n. We find 

S = (Zn - Z<) + Z , - = Z . - - Z 1 . 
n u 1 n+1 n+1 -1 

For the (n? + l) /2 terms with an odd index nf , from z4 to z , we get 
likewise 

O 8 Z O , -« ~" Z/\ B 

n! n?+l 0 

One can easily check the accuracy of both expressions of S and S . 
by taking n! = n - 1. Adding both sums, one must find again the sum Z of 
the n + 1 terms of the sequence z, from z0 to z . 

We have indeed, on the one hand for the number of terms 

( } + i ) * s L i - - 1 . 
and, on the other hand, for the formulas of the sums 

Sn< = zn " z 0 

and 

Sn + Sn- = zn+l " Z - l + z n " z0 = zn+2 " z l = Z n • 

Moreover, man can try to get the sums of the two-by-two terms between the 
indices p and q, both even or both odd. The number of these terms is 
(p - q)/2, and their sum is the difference between the sums S and S 
made from the beginning of the sequence to q and to pe As p and q have 
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the same eveness 9 one obtains 

S - S = z _Ll - z _Ll q p q+1 p+1 

from which it c o m e s , by using the formulas (8): 

(10) 
g - s = ^ ^ S 0 2 + l ( Z s L ) if SLz-P is even 

q p 2 2 2 

s -S =^lE^2 + l ( z ' F ) if SLl_R i s o d d 
q p u u. u 

9. Application to the Fibonacci and Lucas Sequences. The r e l a t i ons , 

which we shall get by application of the formula of the prev ious p a r a g r a p h s , 

could be obtained by us ing the formulas (3) and (4), which give the t e r m s of 

both the Fibonacci and Lucas sequences in the shape of hyperbolic l ines of 

the index n* We think, n e v e r t h e l e s s , m o r e into the sp i r i t of the p re sen t 

pape r to cons ider both sequences as special c a s e s of v e r y g rea t s implici ty . 

We have previous ly seen that in (6), L = F 1 + F - . Substituting 

F to z in the formulas (7), one finds F L = F 0 . 
w n n 2n 

(a) F o r m u l a s of addition and subtract ion. The F o r m u l a s (8) give: 

F ^ + (~1)PF = F L 
n+p n-p n p 

L _,_ + (-1)PL n+p N = L L n -p n p 

F - ( - D F F = F L 
n -p N n -p p n 

L , - (~1)PL = 5F F 
n+p N n -p n p 

In p a r t i c u l a r , 

F ,- + F - = L 
n+1 n - 1 n 

F - F = F 
n+1 n - 1 n 

L • + L - = 5F 
n+1 n - 1 n 

L ,., — L i ~" L , n+1 n - 1 n 

and consequently, 

F 2 , - - F 2 - = F L = F 0 
n+1 n - 1 n n 2n 

L 2 - - L2 - = 5F L = 5 F 0 n+1 n - 1 n n 2n 
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(b) Sums or differences of squares. One finds with the help of formulas 
(9): 

F2 _ (_1)P+V = F F L2 - (~l)P+qL2 = 5F F 
P q P+q P-q P q P+q p-q 

from which we deduce, among others 

F2
 + -p2 - jp T 2 + T2 = 5F 
n n+1 Jj2n+1 n n+1 *2n+l 

F2 + (- l ) n = F ^ F 1 L2 + (- l ) n = 5F ^ F , . 
n n+1 n-1 n n+1 n-1 

(c) Sums of the terms of each sequence. Let us nominate by <J>. and 
A the sums of the first n + 1 te rms , from the index 0 to the index 1. 
Using the formulas of the paragraph 7c and taking zj = 1, we get: 

n n+2 n n+2 

For n + 1 multiple of 4, it becomes 

F F F 5F F 
d> = n+1 ln+5_, n+1 A = n+1 n+3 

n 2 2 2 An 2 2 

For n - 1 multiple of 49 one finds 

^ _ Ln+1 Fn+1 A = V l Ln+3 
% " —T~ ~2T n 2 2 

(d) Sums of the two-by-two terms. The sum of the first (n/2) + 1 terms 
of even index is 

Sn<F) = Fn+1 " 1 Sn<L) = V l + 1 

Tha t of the f i r s t (nf + l ) / 2 t e r m s of odd index i s : 

S ?(F) = F fJ_- S f(L) = L fJ_, - 2 
n? n f + l n? n f + l 
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For the two-by-two sums between the indices p and q, of the same 
eveness, we find, using the formulas (10): 

S (F) - S (F) = ^ £ ^ + 1 S (L) - S (L) = ^ t E hgV + i 
q p 2 2 qv p 2 2 

when (q - p)/2 is odd. When this quantity is even, we have 

F Li 5F F 
S (F) - S (F) = - £ E - £ 2 + 1 S (L) - S (L) = — 1 2 _ £ £ - + i 

q p 2 2 q P 2 2 

(e) Other relations between the terms of the sequences F and L. 
Cancelling out the hyperbolic lines between the expressions (3) and (4), we 
obtain the following relations, in which we can note again the prominent part 
taken by the factor 5 which, is equal to 4 ch2 . 

L2 = 5F2 + 4( - l ) n L9 = 5F2 + 2( - l ) n 

n n ' 2n n 
L2 = F2 + 4F -F _,- 2L0 = L2 + 5F2 

n n n-1 n+1 2n n n 

According to the first of these relations, we see that no one term of the Lucas 
sequence can be a multiple of 5, and 1 
n grows indefinitely. One also finds 
sequence can be a multiple of 5, and that L draws nearer to F <s/5, when 

L2n = L ^ " 2 ( - 1 ) n 

10. Research of a Linear Sequence. The matter here is to research if 
a given number can be a term of given rank in a linear sequence. In other 
words, the values of z and n are given, and those of z0 and Zj are un-
known. The relation 

(5) z = zAF - + z-F 
x ' n 0 n-1 1 n 

contains the solution of the problem. It is a simple equation which must be 
solved by integers, which is always possible. On the other hand, if z0 and 
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zA are a solution, there is an infinity of other solutions defined by z0 + kF 
and Zj - kF - , where k is any integer, positive or negative* 

As an example, let us search the sequences in qhich zT = 81. The equa-
tion of the problem is 

8z0 + 13zi = 81 . 

Few trials show that z0 and zt can be respectively taken equal to 2 and 5B 

Consequently, the solutions are: 

z0 = •• 
Zi = •• 

. -24 

• 21 

-11 
13 

2 
5 

15 
- 3 

28 
-11 

The differences between the terms of two such sequences defined by the values 
k? and kl? of k are equal to the product by k? - kM of the terms of a Fib-
onacci sequence. 

11, We can generalize the notion of linear sequence if we admit that the 
parameter n can vary in a continuous way? without being limited to integers, 
so that z is a continuous fraction z(n) of the parameter n and can con-
sequently take irrational values® This expedient can be used to simplify the 
records, but it is not of practical value for the applications. 

bis 
With the notation of paragraph 3, we can write the formulas (2 ), ac-

cording to the case: 

(2 t e r ) z = ^ W f F ^ or z = 4 ^ T L ^ 
x ' n n+0 n 2 ch A n-Hp 

The quantities z and n are well integers, but it is not the case for the 
functions F _^ and L _|A, like for the parameters A, </), and m far 

Thus, any linear sequence can be reduced to a generalized Lucas or 
Fibonacci sequence by use of an irrational factor* 

In the special case of the connected sequences (paragraph 7), the form-
ulas ( 5 b i s ) , (6b i s ) and (7 b i s ) can be modified like the formula (2b l S) and 
therefore simplified. One replaces to this end: 
[Continued on page 298, ] 


