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1. The sequences of integers such that each term is equal to the sum of
both preceding are infinite in number. Two of these have been especially in-
vestigated: the Fibonacci sequence, conceived at the beginning of the 13th
Century by the mathematician Leonardo of Pisa, better known as Fibonacci,
the Lucas sequence pointed out at the end of the last century by the French
mathematician Lucas and named for him. Both sequences gave rise to many
works which showed manifold properties of these sequences and conduced to
strides in the numbers theory.

The present research work doesn't mean to go back on these questions,
but it tends to make known how the use of the hyperbolic functions make much
easier general feature works on the linear sequences defined at the beginning
of the present paper, and from which Fibonacci and Lucas sequences are
only special cases.! The author has recently had recourse to these functions
in a very different field, that of mathematic geography, and he has been the
first to show that their utilization simplified notably the determination of the
conformal representations of the sphere or ellipsoide on the plane, that it
lightened very much the algebraic expression of these representations and
that it helped to state precisely the relationships existing between the differ-

ent systems.

2. The sequences concerned are defined by the general relation:
(1) Z_ = Z + z

in which z, indicates the term of rank n.

ILucas developed a very different generalization of both sequences. It will
be reminded in paragraph 6.
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278 ABOUT THE LINEAR SEQUENCE OF INTEGERS SUCH THAT [May

Each sequence can therefore be characterized by two arbitrary integers
which we call z, and z; and which don't seem, a priori, to be part of the
sequence because they are not squaring with the definition (1); but, actually,
they, too, enter into the sequence since it is possible to extend it without
end, in the opposite direction, starting from the arbitrary terms z; and z.

3. The shape of the relation (1) between the successive terms of the
sequences suggests immediately the use of circular or hyperbolic lines (func-
tions) for expressing each term according to its place in the sequence. As it
is a question of indefinitely increasing sequence.s, it is obviously suitable to
have recourse to hyperbolic lines.

Let us write the relation (1) in the form:
(2) 4 -7 =z .,

and designate by m, A, and ¢, three constants to fix ulteriorly in terms of

sequence's data. Let us set besides: either

Zoq = mshi(@ + ¢ + 1) and z, 4 = mshi(@ + ¢ - 1)
or
Zoq = mcha(@ + ¢ + 1) and zZ, 4 = mchi(@ + ¢ - 1).

Then the relation (2) conduces to:

N
1l

2mshacha (n + ¢)

for the first case, or

N
I

2m shashxn + ¢)

for the second case.

Let usdefine now the parameter )\ by sh)X = 1/2, from whichit comes
chy = ~5/2 and
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(e = 1—%@) (golden number)

Both expressions of z, become simplified and it is obvious moreover
that the terms of the sequence can be represented alternatively by hyperbolic

sines and cosines

(2 bis) = m chA(n + ¢)

z
n
or

z, = m sham + ¢)

or, generally, speaking

B A0H0) N e—)\(n+¢)
Zy T M0 2

The parameters m and ¢ are easily obtained with the help of initial
data zy; and z;, but it is obviously necessary to consider two cases accord-
ing as one adopts for z;, a hyperbolic sine or cosine, and the inverse for
z4. In the first case, the terms with an even index agree with hyperbolic
sines, those with an odd index are represented by cosines. Inthe secondcase,

the inverseoccurs. To make adistinction betweenboth cases, we shall write:

A =z + zoe_x B =7y - zoe)\

from what, taking the value of A into consideration,
A - B = 2z5cha A+ B = 2z - 7 AB = 7k - gz - 75 .

Suppose, now, that one intends to adopt hyperbolic sines for the terms

with an even index. It comes:

mshx = z; = mchi(¢ + 1) = z,,
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from what

Zy - Zy sha

m chd) = —px = Tehn

and therefore,

A - —_—
me ¢ _ A/chX me AP _ B/ch) m = ~NAB/ch) A9 _ NA/B

]
I

B must so be positive, and we have consequently:

72y 7 Zge

either

or
2Z1 - Zy > ZO'\/E

A parallel argument shows that if a hyperbolic cosine is adopted for the

terms with an even index, -B takes the place of B in the formulas of m

and of eNp, and that consequently, B must be negative and
z; < z, _1_+_2_._\f5_

For example, the sequences defined by z;, = 3 and ‘zi =1, orby z; =

2 and z; = 3 must be represented by

z = mcha(n + ¢)

when n is even, whereas a hyperbolic sine is necessary for the sequence
defined by zy = 1 and z; = 2.
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Using the formulas of m and , we get the general expression

1 4 D
(1) z = m [Aexn - B(—e‘ )\) ]

n

Before going further in the study of the sequences, we deal first with
the special case of ¢ integer; then, this parameter can be taken cipher,
which is equivalent to shifting the number of the terms, the nth term re-
ceiving the index n - 1. The condition ¢ = 0 produces A = B if B is
positive, A = -B in the opposite case. Both cases correspond respectively
to the Lucas and Fibonacci sequences.

The knowledge of both these sequences makes it much easier to set up
formulas of the general sequence z. We add, besides, a special sequence
G which also appears in the relations.

4. The Fibonacci Sequence. TFor this sequence, A = B, and conse-

quently, z; = 0 and z; = A. Hence, for the general term,

Z

Zy T ch [e

As no motive exists for keeping the same factor z; in all terms of the

sequence, we can take z; = 1. Therefore, we have, with the symbol F in-

stead of z:
_ shxn
®) Fn = o
if n is even,
_ ¢chn
F = Gha

if n is odd.

Isubstituting to the quantities A and B in this formula, their expressions
in the terms of z, and z;, one may obtain a relation which ig no other than
the relation (5), given further and then more directly obtained.
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It would be possible to more quickly obtain these relations by departing

from the usual definition z; = 0, z; = 1, and writing
m shxy = 0 mch ¢+ 1) =1,

relations giving ¢ = 0 and m = 1/cha.
As

the expressions of the general term become:

e [ (]

or, more symmetrically,

(1“/5)“_(1_ \/3)“
F o= \_2 2

" 1+ x5 1- 45
z z

and numerically,

_ (1,618 -+ )" - (-0,618 ---)"
n 2,236 .-

As shkx, with k integer, is always divisible by shx, andas cl}kx is
divisible by chx when k is odd, the term Fkn is always divisible by Fn,
which is also shown by the general formula. Specifically, the even terms
have an index divisible by 3; the terms divisible by 3 have an index divisible
by 4; the terms divisible by 5 have an index divisible by 5; and so on.

Likewise, when n becomes very great, which makes than very near

from the unity, the ratio of consecutive terms draws near to chi + sha, i.e.,
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et = L NS +2\/3 = 1,618 -
So the successive terms of the Fibonacci sequence are:
n=0 1 2 3 4 5 6 7 8 9 10 11
Fn=01123581321345589
sci’f; =0 1 3 8 21 55
-C(I;T)\;\l = 1 2 5 13 34 89
5, The Lucas Sequence. Wehave seen that, forthis sequence, A = -B,

from which z; = A/chx and z; = zy/2,
the symbol L for the terms of the sequence, and taking zy = 1,

Fibonacci sequence, and for the same reason,

L =

n

and we have

4

for n even, and

for n odd.

the relations

and

n
M 4 (et = (-——-1 x5

L = 2cham
n

L. = 2 sham
n

()

and, for the general term, using

as in the

It would also be possible to get these expressions directly from
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msha(p +1) = z; = 1

which give ¢ = 0 and m = 2.

If one considers the product kn, the term Lkn is divisible by L,
when k is odd. Particularly, the terms having an index odd multiple of 3
are divisible by 4, whereas, as ch6A is equal to 9, odd integey, the terms
having for index a multiple of 6 and consequently for expression 2ch6Xn, are
divisible by 2, and by no other power of this number, whatever the eveness
of n may be.

The Lucas sequence, therefore, is as follows:

n=012 3 4 5 6 7 8 9 10 11 12

Ln =2 1 3 4 7 11 18 29 47 76 123 199 312 ... 322
2chn = 2 3 7 18 47 123 312 --- 322
2sh n = 1 4 11 29 76 199

6. The previous expressions of Fn and Ln in terms of

1+ 5
2

and 1- N5 _2'\/3

are connected with more general results set up by Edouard Lucas, who con-
siders the functions Un and Vn defined by

n n
_a -b
Un a-b

and
vV o=a"+p"
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Lucas shows that UZn = Unvn (a similar formula is given further in para-
graph 9) and that, on the other hand, he can write Un = 2 gin n and Vn =
2 cosn; for n real, the circular trigonometric lines fit, whereas for n
imaginary, one must use hyperbolic functions.

It is also interesting to consider the quadratic equation having the roots
a and b. In the special case where Un and Vn agree, respectively, with
F, and L , this equation is X2 -x-1=0,

7. Connected Sequences. One can easily set up the relation:
(5) z = z F + z. F

permitting to deal with all sequences defined by relation (1) as soon as the
Fibonacci sequence has been investigated.
We shall consider now that this relation (5) defined a function Gn(z, F)

of both sequences, and we shall spread it to any sequences y and z, writing:

Gn(y,z) = ZoYp-1 * %1%

Through the relation (5), one shows without difficulty that Gn (y,z) =
Gn(z ,¥), and consequently,

Gn(y,z) = YoZno1 T V1% -
More generally, and if q is any integer, we find more:

Gn(y,z) - qun—q-l + Zq+1yn—q

One can also show that Gn =G G

+
n-1 n-2’
quence G is a linear sequence of the family (1) concerned and has

and therefore that the se-

ing terms:

Gy = yiZo *+ Z1Yo - YoZo

and
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Gy = yoZo * ViZq .

With the symbols of paragraph 3, we can show that, on the other hand,

Aly,z) = AA(z) m(y,z) = m(y)m(z)chA
B(y,z) = B(y)B(z) O(y,8) = ¢@F) + 9(z)
hence,
(5 bis) G, (7,2z) = m(y)m(z) chA shAln + ¢(y) + ¢(@)]

or
Gn(y,z) = m(y)m(z) chA chAln + ¢(y) + ¢(z)],
accordingly as to whether Gy is superior to

1+ A5

Gy 5

We have first, Gn(z,F) =2z The sequence Gn(z,L) affords a special

interest because

Gn(Z’L) = LOZn—l + len - 2Zn-l *+ R | + Zn+1
which gives, in particular:
(6) L, =G 0,F) =F ,+F 4

When the sequences y and z are the same, one may obtain, using
Gn(z) instead of Gn(z,z),

Gn(z) = zgZ, 4t z.Z, = Zqzn-q-l + Zq+1Zn—q .

In this sequence,
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Gro(Z) = Z0(2Z1 - Zo)

2

G1(Z) Z% + Zq

1l

1l

Gz(Z) Z1(2Z0 + Zi)
We find also:

(6 bis) Gn(z) = m?ch)ch) (n + 20) or m2ch) shy (0 + 20) ,

according to the value of the ratio Gy /Gy .

Consequently, through these relations,

Gn(F) = Fn
™ G, = 5F
znGn(z,L) = GZn(Z) .

Likewise, the sequence z, can be connected tothe same sequence z, p

shifted by an integer P. As m(z) = m(z+p) and

(Zz,) = @+ @),
it comes
G, (.2, ) = m2chixchA(m +p +29) if n and p have different
(7 bis) p eveness
Gn(z,z+ ) = m?chashi(n +p +29) if n and p have the same
P eveness

Obviously, the terms of the connected sequences G must be, like those of
the other linear sequences, alternatively a hyperbolic sine and a hyperbolic
cosine.

8. SundryRelations. Having resort to formulas interconnecting hyper-
bolic lines, we can set up many relations between the terms of the linear
sequences of type (1).

() Formulas of addition and subtraction. One finds
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~ z, L10 if p is even

Zpap ¥ Znp ~ { (@, + zn+1)Fp if p is odd

(z )Fp if p is even

n-1 * Zpa1

Zpap T Zpep T {Zan if p isodd

These relations can be condensed into the following form:

z L
n-p n p

(z

n-p n+1

p
Zn+p + (-1D)F =z

)JF

* 2y g F,

_NP
Zn+p—(1) z

One can write them more symmetrically:

{zn wpt (-1)pzn_p =L,G,@T = G, L, FIG, (2, F)
®)

(P _ or another way {
Zntp 17z, p ]E‘pGn(z,L)

= Gp(F3 F)G’n(zs L) ’

Each of the above mentioned sums and differences concerns both terms
z, +p and zn__10 of which the indices are separated from 2p which is an
even integer.

When the difference, which we call a, between the indices q +a and
g of the considered terms is odd, i.e., when we try to compute the sum
zq +a + z, or the difference zq 4 " %y the problem is much more difficult
because the terms are expressed, one by a hyperbolic cosine, the other by a.
sine, and there is no general formula for the addition or subtraction of both
lines. Then, it is possible, to make the investigation easier, to pass through
the Fibonacci sequence by introducing the following auxiliarylinear sequences,
of which the number is unlimited and which are only interesting when a is

odd. We use the letters x and y to denominate these sequences:

1l
RS
!

Xy (@)

1l
!
i
i

¥y @ gta ~ “q

Particularly:
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1) = =
X, @ = Fopo Vg® = Fo_q
xq(S) = 2Fq+2 yq(3) = 2Fq+1
5) = &F + 4 =
xq( ) g+1 Fq yq(5) 5Fq t 2Fq

Generally speaking, we have
Foin = Fa1Fq ¥ FoFgu
Hence, with the help of (5),
-7 = zOXq_l(a) + zlxq(a) = Gq[z,xq(a)] .

z
q+a q

In the same way,
“gta T Zq ~ Ggl®¥q@]

(b) Sums or differences of Squares. Using the sums and differences

just set up, one finds:

2

7t -z =@ Z)F if and have the same eveness
o +q( ) o- p q

9) p q q
Ptg2 =g F if p and g have different eveness.
Zpt2q = Cpg@Fy g P 4

and, by condensing these relations:

2 Py 2 o
zé - (-1 = G z)F .
p - VT T Gy

The difference of the squares, when p - g is odd, can be written:

2 _ g2 = —_ -
z -7 Gq[z,xq(p q)]Gq[z,yq(p a)]

but this way does not lend itself to practical applications. Likewise, for the
sum of the squares when p - q is even,
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(¢) Sums of the terms of Linear Sequences. One easily finds by recur-

rence the following relation which is suitable to all linear sequences defined

by formula (1):

We have, therefore, in the case of the first n+1 terms, from p =0 to

g = n:

In addition to this general method, there are, for two special cases,
other methods making possible, for instance, to get checking of the
computation:

In one of the cases, the number n + 1 of the implicated terms is amul-’

tiple of 4 and one gets

7, L)

7 = Fn+1 “n+5 + “na1 _ Fn+1 Gn+3(
n 2 2 2 2 2

The second special case, whichlooks more interesting, concerns a num-
ber of terms which are multiples of 2 and of no other power of 2, In this

case, n - 1 is a multiple of 4 and we have, consequently,

i.e., the sum of the n + 1 implicated terms is equal to the product of the
(n+5)/ Zth term of the sequence (index (n+3)/2), by the (©+3)/ Zth term of
the Lucas sequence (index (n + 1)/2). There is, therefore, equality between
the sum of the first six term (n = 5) and the product of the fifth term by 4:
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the sum of the first 10 terms (n = 9) and the product of the 7th term by 11,
the sum of the first 14 terms (n = 13) and the product of the 9th termby 29,
the sum of the first18 terms (n = 17) and the product of the 11th term by 76.

and so on.
(d) Sums of the two-by-two terms. Let us add first the (n/2) +1 terms

with an even index, from 0 to n. We find

S, = (zg - z¢) + Zui1 T Zpe1 T Zoq v
For the (' + 1)/2 terms with an odd index n', from zy to z,, we get

likewise

Sn' = Zpyq ~ %o -

One can easily check the accuracy of both expressions of Sn and Sn'

by taking n' = n - 1. Adding both sums, one must find again the sum Zn of
the n +1 terms of the sequence z, from z; to z .

n
We have indeed, on the one hand for the number of terms

'+
<%+1>+n2 ~=n+1,

and, on the other hand, for the formulas of the sums
and

Moreover, man can try to get the sums of the two-by-two terms between the
indices p and ¢, both even or both odd. The number of these terms is
(o - q)/2, and their sum is the difference between the sums Sq and Sp
made from the beginning of the sequence to q and to p. As p and g have
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the same eveness, one obtains

S’q - Sp = Zq‘+1 - Zp+1

from which it comes, by using the formulas (8):

F G
S _sz_%:_p_%Jr_PJrl(Z’L) if qupiseven
(10)

L G
S 4 i, @ F) oy AP g oqg

i
wn
It

q p

9. Application to the Fibonacci and Lucas Sequences. The relations,
which we shall get by application of the formula of the previous paragraphs,
could be obtained by using the formulas (3) and (4), which give the terms of
both the Fibonacci and Lucas sequences in the shape of hyperbolic lines of
the index n. We think, nevertheless, more into the spirit of the present
paper to consider both sequences as special cases of very great simplicity.

We have previously seen that in (6), Ln = Fn-l + Fn 41 Substituting
F to z in the formulas (7), one finds FnLn = an.
(a) Formulas of addition and subtraction. The Formulas (8) give:

-1P = -1P =
Fpp * COPF = B L Lpgp * CDPLy = LT

P - _ (1P =
Fn_p - (-1) Fn_p Fan L, p (-1) Ln_p

|

3]

=
=3

=

In particular,

Fn+1 * Fn—l - Ln Lh+1 * Ln~1 = oF
For = Fpop = Fp Lppg ~Lpg = Ly o
and consequently,
2 _ 2 = = 2 _ 12 = =
Fn+1 Fn—l FnLn FZn Ln+1 Ln—l 5FnLn 5FZn



1971] EACH TERM IS THE SUM OF THE TWO PRECEDING 293

(b) Sums or differences of squares. One finds with the help of formulas

(9):

+ -+
F2 - ()72 = F T 12 - ()P - 5p P
p ) q p+q p-q p -1 q p+a p-q ’

from which we deduce, among others

2 L ow2 2 412 =
T Fa = Fopn Lp *hna T 2Fon

9 _ n - 9 . n -
Fn + (-1) Fn+an_1 Ln + (-1) 5F

n+1 n-1
(c) Sums of the terms of each sequence. Let us nominate by CDn and
An the sums of the first n+ 1 terms, from the index 0 to the index 1.

Using the formulas of the paragraph 7c and taking z; = 1, we get:

(1)11:Fn+2_1 An:LnﬁZ_1

Tor n + 1 multiple of 4, it becomes

® = F1r1+1 Fn+5 + Fn+1 _ SF F

n 2 2 2 Ay = —3 2

For n - 1 multiple of 4, one finds

¢ = L F A = Lo+t Dngs
n 2 2 n 2 2

(d) Sums of the two-by-two terms. The sumofthe first (n/2) +1 terms

of even index is

S, () = F -1 s, (L) =L 4 +1

That of the first (' + 1)/2 terms of odd index is:

Sy = F $,(@ = L

n'+1 n'+1
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For the two-by-two sums between the indices p and g, of the same

eveness, we find, using the formulas (10):

LCI-P Lq+p LQ-D LQ"'P
when (g - p)/2 is odd. When this quantity is even, we have

Fq—P Lq+P 5Fq—2 Fq+P
Sq(F) - Sp(F) =— 5t 1 Sq(L) - Sp(L) = 55— 1

(e) Other relations between the terms of the sequences F and L.

Cancelling out the hyperbolic lines between the expressions (3) and (4), we
obtain the following relations, in which we can note again the prominent part
taken by the factor 5 which is equal to 4 ch? .

1l

2 52 1 _ 2 )R
Ln an + 4(-1) LG 5Fn + 2(-1)

2 2 = 1.2 2
Ly Foo+ 4F 2L Ly + 5F)

n—an+1 2n

According to thefirst of these relations, we see that no one term of the Lucas
sequence can be a multiple of 5, and that Ln draws nearer to Fn N5, when
n grows indefinitely. One also finds

L. = 12 - 2(-)"

2n n

10. Research of a Linear Sequence. The matter here is to research if
a given number can be a term of given rank in a linear sequence. In other
words, the values of z and n are given, and those of z, and z; are un-

known. The relation

5 z =z F + z F

contains the solution of the problem. It is a simple equation which must be

solved by integers, which is always possible. On the other hand, if z, and
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zy are a solution, there is an infinity of other solutions defined by z; + an
and zq - an—l’ where k is any integer, positive or negative.

As anexample, let us search the sequences in ghich z; = 81, The equa-
tion of the problem is

8zy + 13z; = 81.

Few trials show that z, and z; can be respectively taken equal to 2 and 5.
Consequently, the solutions are:

Zo = ++» -24 -11 2 15 28
21 13 5 -3 -11

4

The differences between the terms of two such sequences defined by the values
k' and k' of k are equal to the product by k' - k' of the terms of a Fib-
onacci sequence.

11. We can generalize the notion of linear sequence if we admit that the
parameter n can vary in a continuous way, withoutbeinglimited to integers,
so that z, is a continuous fraction z(n) of the parameter n and can con-
sequently take irrational values. This expedient can be used to simplify the
records, but it is not of practical value for the applications. o

is

With the notation of paragraph 3, we can write the formulas (27 "), ac-

cording to the case:

ter) z_ = NTABIF or z = NABL

2 n n+¢ n 2chA

ntf

The quantities z and n are well integers, but it is not the case for the
functions Fn 0 and L, e like for the parameters X, ¢, and m f{or
NTEB).

Thus, any linear sequence can be reduced to a generalized Lucas or
Fibonacci sequence by use of an irrational factor.

In the special case of the connected sequences (paragraph 7), the form-
ulas (Sbis), (Gbis) and (7bis) can be modified like the formula (Zbis) and

therefore simplified. One replaces to this end:
[Continued on page 298. ]




