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1. INTRODUCTION

The purpose of this paper is to find expressions for
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where { Hn} is the generalized Fibonacci sequence defined by Horadam [6]

as follows:

(1.1) H =H

n n—l"-H

n-2 n 23), Hy = p, H2=p+q,

where p,q are arbitrary integers, and

(1.2) H o= @VB)™ (12" - mb™)
with £ = 2(p - gb), m = 2(p - qa) and where a,b are the roots of x* - x
-1=0,

The required expressions will be obtained as results (2.1), (2.2), (2.3),
and (3.6), respectively. They will be seen to involve Lambert series and
Bernoulli-type polynomials.

Let

_pb-gb
(1.3) H=o=4qa

We define the Lambert series

*Part ofthe substance of a thesis presented for the Bachelor of Letters degree
to the University of New England in 1968,
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° T
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Details of some of the properties of the Lambert series may be found in
Hardy and Wright [5] and Landau [7].

We also need to introduce a new expression
) T
(1.6) l s %= =2 -,

in which the BS)'(X) is analogous to the general Bernoulli polynomials of
higher order which have been discussed by Gould [3].
A Bernoulli polynomial Br(x) is defined by means of
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Some of their properties are developed by Carlitz [2], Hardy and Wright
[6], and Gould [3] and [4] who relates the Bernoulli and Euler numbers.
In fact, the BS:)'(X) are generalized Bernoulli polynomials and satisfy

the recurrence relation
(L.8) Bg:)'(x +1) - HBS)'(X) - nB](:_l)'(x) = 0.

The proof of (1.8) is as follows.
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We shall also use a special case of B,

0
r nx
n _ ne
(1.9) 2B =B
r=0

The B'r(x) also satisfy a recurrence relation
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This recurrence relation follows since
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t)'(X), when r = 1, defined by
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2. CALCULATION OF THE RECIPROCALS
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Thus

® \
2.1 2 H =2 = (Li(é'—z—@) - L, (1;2—3\/3))
n=1

That is, the required expression is seen to involve Lambert series defined in
(1.4) and (1.5).
Write
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where C = b/a.
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Then
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where z = nlog C. Thus
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From this, the generating function for powers of the reciprocals can be set

up. This is

o0 0 n
(2.2) Z H;ltzrl = < > 2 B x) (log C) Z ntt (———-—-t_}Z{ X) .
n=1 a

n=1 b

Thus, the required expression involves the generalized Bernoulli polynomials
of higher order (1.6}.
As a special case of (@) with t = 1, it follows that

(2.3) ! = ‘2“/“ ZB’ ) HogC) C)
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As expected from (2.2), our expression involves the Bernoulli polynomials
(1.9).

Following Gould [3], let

(2.4) Hex) = D, H "
=1
Then
- n n
(H@x) - mHbx) = ) H;ll (’Za - mb 1o 5 <"
i 25
= Z 285 x"
n=1
Thus
(2.5) (H(ax) - mH(bx) = i“{g’; ,

which is a succinct expression involving

3. THE OPERATOR E

We introduce an operator E, defined by

(3.1) EHn = Hn+1

Thus
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Hn+2 - Hn+1 - Hn =0

becomes
(E*-E-1H =0
or
(3.2) E -2)E - b)Hn = 0.
Let

Gn = (E - b)Hn = Hn+1 - bH
Then from (3.2),
(3.3) (E - a)Gn =0 or Gy = 2G, »
and so
(3.4) Gy = Hy - bH; = ap +q.

It follows from (3.3) and (3.4) that

(3.5) G, = 2% Lap + q .

Now

Hn+1 = an + Gn s

and so
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See also (a).
We have thus established expressions for the reciprocals stated at the
beginning of this article.
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