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1. INTRODUCTION 

The purpose of this paper is to find expressions for 

EH2~n> E ^ , IT1 and H ^ . 
n=l n=l 

where (H } is the generalized Fibonacci sequence defined by Horadam [6 ] 
as follows: 

(1.1) Hn = H n - 1 + Hn_2 (n > 3), Hi = p , H2 = p + q , 

where p,q are arbitrary integers, and 

(1.2) Hn = ( 2 \ / S r 1 (%n - m b n ) 

with H= 2 (p - qb) , m = 2 (p - qa) and where a, b are the roots of x2 - x 
- 1 = 0. 

The required expressions will be obtained as results (2.1), (2.2), (2.3), 
and (3.6), respectively. They will be seen to involve Lambert series and 
Bernoulli-type polynomials. 

Let 

(1.3) H = E J l ^ b . 
p - qa 

We define the Lambert series 
*Part of the substance of a thesis presented for the Bachelor of Letters degree 
to the University of New England in 1968. 
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OO 

(1,4) Lj(x) = ] C H" r / 2 - * -
- 1 - x 

r=l 

and 

(1.5) L2(x) = ^ H' 
r .-r x 

l - x r 
r=l 

Details of some of the properties of the Lambert series may be found in 
Hardy and Wright [5] and Landau [7]. 

We also need to introduce a new expression 

(t)f 
in which the B (x) is analogous to the general Bernoulli polynomials of 
higher order which have been discussed by Gould [3]. 

A Bernoulli polynomial B (x) is defined by means of 

V^ n r n e 1 ^ 
(1.7) V B (X) 2 - = -3e r r; «. -

A e - 1 
r=0 

Some of their properties are developed by Carlitz [2] , Hardy and Wright 
[ 5 ] , and Gould [3] and [4] who relates the Bernoulli and Euler numbers. 

(t)f 
In fact? the B (x) are generalized Bernoulli polynomials and satisfy 

the recurrence relation 

(1.8) Bit)?(x + l) - HB(t)?(x) - nB( t"1 ) ?(x) •= 0 . 
r r r 

The proof of (1.8) is as follows. 
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E f r f f c + D - H B f w } ^ 
r=0 

t nx n „ t nx n e e Hn e 
( e 1 1 - ^ * (e11-!!)1 

n t " 1 e ° X V^ Ut-lV. , n r 

= n —E Tl = n Lu Br (x) F" 

(t)T 

We shall also use a special case of w (x), when r = 1, defined by 

—^ r nx 
d-9) E BLW ^r = n e 

r rl n __ 
A e - H 

r=0 

The Bf (x) also satisfy a recurrence relation 

B! (x + 1) - HB' (x) = r x r % 
r r 

This recurrence relation follows since 

r 
(B*r(x + 1) - HB'r(x)}5r 

r=0 

nx n nx 
ne e Hne 
e11 - H eR - H 

nx \~^ (nx) 
ne = n L V r=0 
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2. CALCULATION OF THE RECIPROCALS 

DH2n = 2 ^ i : , 2n * .2n 
n=l n=l ia ~ m b 

Thus 

(2.1) 

V-rb 2n 
2 J _ L y _ T T 

K 4 n 

n=l—T b 

! « m ^ L 1 

1 b 2 n l h 4 n 
H b 

i - ^ - b 2 * i - l b 4 n 
n=l | ^ H 

= 2VISE|H-Ib2nr-H-v 4nr < n - -z o - i i r 
n=l r=l 

r=l v 

E^^^V^H^) 
That i s , the required expression is seen to involve Lambert series defined in 
(1.4) and (1.5). 

Write 

-t _ / ^ / s V _ L i 
n \-mJ nt ( c n _ allu (C11 - H)t 

where C = b/a. 
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Then 

-t _ /^ysV i _ c ^ 
n \ - m / (cV)11 ~^~~^ 

= (i^i i ex(nl°gc) 

\ ~m) id***)* ( e n l o § C - H ) ' 

= (2^\ L 
_ V - m / (n log C)fc 

t XZ 
z e 

(C a ) (e - H) 

where z = n log C. Thus 

^ ) ——r-x-niEBfw (n log C ) r 

r=0 
(a) 

Wtf f rS*" (log C ) r fc r - t 
r! 

F r o m th is 9 the genera t ing function for powers of the r e c i p r o c a l s can be set 

up. Th is is 

(2.2) L <** - fe) E = f « ^ • 2 »r-' -rib) • 
n=l ^ r=0 n=l ^ a ' 

Thus s the requ i red express ion involves the genera l ized Bernoull i polynomials 

of h igher o r d e r (1.6). 

As a special c a se of (a) with t = 1, it follows that 

(2.3) H"1 = f ^ n £ B' (x) ^ ^ n'"1 

' n . l ~ x u x , n *—' r r! 
m(a b ) r = Q 
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As expected from (2.2), our expression involves the Bernoulli polynomials 
(1.9). 

Following Gould [3], let 

oo 

(2.4) H(x) = Yl H^1 xR • 
n=l 

Then 

oo 

IH(ax) - mH(bx) = Y, E^ (^ ~ " ^ \ 2 N/5 x11 

= X)2^5xn 

n=l 

Thus 

(2.5) m(ax) - mH(bx) = | ^ | , 

which is a succinct expression involving 

E H"1 xn 

n=l 

3. THE OPERATOR E 

We introduce an operator E , defined by 

(3.1) EH = H ^ . 
n n+1 

Thus 
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n+2 n+1 n 

becomes 

(E2 - E - 1)H = 0 n 

o r 

(3.2) (E - a) (E - b ) H n = 0 . 

Let 

G = (E - b)H = H _,_- - b H . n v n n+1 n 

Then from (3.2), 

(3.3) {E - a ) G n = 0 o r G n + 1 = a G n , 

and so 

(3.4) Gi = H2 - b H i = ap + q . 

It follows from (3.3) and (3.4) that 

(3.5) G n = a n _ 1 ( a p + q) . 

Now 

H n + 1 = b H n + G n • 

and so 
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/. -v r / a n r - r 
(-D W^a r = b~' Hn' . E — 7 ^ - (ap + q)1 

„ n r i b H r=0 n 

where 

Thus 

(t) - t(t + l)(t + 2) . - (t + r - 1) [1J 

(-l)r(t)„ ^ „f ^ r - s 8 

a_ H *-r t _ y ^ r T*^ rl p 
n+1 L** r! £-* si r - si s-M-nr,r+t n 

r=0 s=0 a D 

and so 

_t ^ ^ (-D (t)r r - s s . 
lo.o; n n + 1 ^ L , ^ s ! r _:JSf s _ n r r+t n

n 

r=0 s=0 a D 

See also (or). 
We have thus established expressions for the reciprocals stated at the 

beginning of this article, 
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