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H-183  Proposed by Verner E. Hoggatt, Jr., San Jose State College, San Jose, California.

Consider the display indicated below.
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(i) Find an expression for the row sums.
(ii) Find a generating function for the row sums.

(iii) Find a generating function for the rising diagonal sums.

H-184  Proposed by Raymond E. Whitney, Lock Haven State College, Lock Haven, Pennsylvania.

Define the cycle @ n=1,2, ) as follows:

th

(1) a = (1234 + o +Fn), where Fn denotes the n~—~ TFibonracci

number.

389



390 ADVANCED PROBLEMS AND SOLUTIONS [Oct.

Now construct a sequence of permutations

Fi
gozn , n=1, 2)
1:
where
F. F. F
" i+2 _ i i+l .
(ii) @, =q i=1)

Finally, define a sequence {un }°° as follows:

w, is the period of (ii); i.e., urt::l isthe smallest positive integer such
that

Firuy Fi oo
(iii) @, = a i =N)

a. Find a closed-form expression for w -
b. If possible, show N = 1 is the minimum positive integer for which
(iii) holds for all n.

H-185 Proposed by L. Carlitz, Duke University, Durham, North Carolina.

Show that
n
(1-20" = ) (-1)“"‘(“2;"‘)(21?) @ -V [k, n+k+ LR+ L x]
k=0 ‘

where ;F;[a,b; ¢; x] denotes the hypergeometric function.

SOLUTIONS
H-127 REVISITED

H-164  Proposed by Murray S. Klamkin, Ford Motor Company, Dearbarn, Michigan.

Generalize H-127 and find a recurrence relation for the product
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C, = A, B ),

where An and Bn satisfy the general second-order recurrence equations:

1) A ® = RXA (x) + SE)A__ &)

@ B 1) = PGB ) + QY B,_ ),

a =1 and Ay, Ay, By, By arbitrary.

Solution by L. Carlitz, Duke University, Durham, North Carolina.

We consider the following more general situation. Let E denote the
operator defined by Ef(n) = f(n +1). Let oy, .-, Qpy PBys *°*, Bg denote
r + s arbitrary constants and assume that
(1) (E—ozi)-u(E-a/r)An=O

(2) E-B) -+ (E-B)B =0,

If Cc = Aan, we shall show that

r S
(3 TiTTeE - @ B)-Cy = 0.

i=1 j=1

If the o's are distinct and the p's are distinct, the proofof this asser-

tion is easy. In this case, the general solution of (1) is given by
A = cioz?+-" +c adb
rr

n

where cy, **+, cp are independent of n; the general solution of (2) is

n
Bn = dl,Bril + oo +dsBs )

where dy, °**, dg are independent of n. Then
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Cn = Cldi(alﬁl)n o A Crds(arﬁs)n

and (3) follows at once.

For the general case we require the following lemma. Let
T _ s _
(E—a)An—O, (E—ﬁ)Bn 0.

Then C_ = A B _ satisfies
n n n

E - aB)r+S_1Cn = 0.

To prove this, note that

_ n
An = Pr_l(n)oz ,

where Pr_l(n) is a polynomial in n of degree r - 1 with arbitrary constant

coefficients:
B, = Q_ w8,

n

where Qs—l(n) is a polynomial in n of degree s - 1 with arbitrary constant

coefficients. Then

C, = P, Q, ;0 @)"

and the assertion follows at once.

Now let
(€ - a)tee (B - ap)°TA =0

f fsp =
(E - p)t-ee (E - B)SB =0,

where the o's and p's are distinct. Then, by the lemma,
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r s e, + -1

i _
@) TITT® -8 c =0

i=1 j=1

This result is somewhat stronger than (3). The degree of the operator
in the left member of (4) is equal to

T < r s
)20 TET I NS P

i=1 j=1 i=1 =1

When some of the a's and B's are equal, c, may satisfy a recurrence of

even lower degree. For example, if
(E - o)+ (E - ar)An = 0,

(E - )« (E -ar)Bn =0,

then C][1 satisfies

1]
o

(E - A4)E - oyoy) o E - azr)Cn

a recurrence of order n(n + 1)/2.

Also solved by C. B. A. Peck, M. Yoder, and the Proposer.

SHORT-TERM INDUCTION

H-165 Proposed by H. H. Ferns, Victoria, B.C., Canada.
Prove the identity

n

n
. F
Z(H\Fkl ) (Fk> v, « £ 2

i )3
i=1 /¥ k-2 k-2
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where Fi denotes the J'Lth Fibonacci number.

Solution by the Proposer.

The proof of the given identities is based on the two identities:

n - 9
(1) Foot@ @ F
(2) F oo+ 8 = FF,

in which @ = (1 + ~6)/2 and B = (1 - \/5)/2. These are readily proved by

induction on n. Thus, if in (1), we put n = 1, we get

or

l+a=ad ,

1l
=
DN

which is true. Assuming that (1) is true for n 'y, r=1,r, we have

and

Adding corresponding members of these two equations, we get

F _+F .+ +odf =@ ., +F)
r r-1 r

r-1 _ 9
+ o (1+cx)—a"_l5‘]£‘+:L

T+
+ o - AF

r-1 +1 °

Hence the induction is complete for the proof of (1). The proof of (2) is

similar.
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Continuing with the proof of the given identity, we have from (1)

Kk n n

F
1+ 2 S S k # 2
(e55) - (=5°)

Hence

n i

o z (0)(55)- ()

i=0

In a similar manner (2) yields

n

@ > (3)(%)1 ) (%)n 2o

i=0

Subtracting members of (4) from the corresponding members of (3) we

have

F, . F, \'
S - (55) r wro

Fr o

This completes the proof of the given identity.
Note that addition of (3) and (4) yields

L . F,\"
SILTN S TR

Fr o

Some special cases are of interest. Putting k = 1 and k = 3 in these

two identities, we get the following.
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Also solved by A. Shannon, M. Yoder, C. B. A. Peck, L. Carlitz, and D. V. Jaiswal.
SUM EVEN INDEX

H-166  Proposed by H. H. Ferns, Victoria, B.C., Canada (Corrected).

Prove the identity

(’?)Li F_., if m is odd
1 m mil

-~
I M:
[y

2mn

N ,

2 (_1)n+1 (n) L' F . if m is even.
i/ "m mi

i=1

Solution by the Proposer.

In the identity (this Journal, Vol. 7, No. 2, p. 174),

n i n
Z n i F = _F_m_ o - F (m # k)

i Fm—k mi+\ F nk+)\ b ’
i=1

m-k

put A =0 and k = 2m. We get
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i=1

n

Hence

n
n+tifn\,1i
Z (-1) (i)LmFmi ’
i=1

Also solved by M. Shannon, B. Giuli, and M. Yoder.

HIGHER BRACKET

ADVANCED PROBLEMS AND SOLUTIONS

n F i F n
Z n 2m F - m \p
i\F mi F 2mn
-m m

F i
(I?) —2m  \p -
. i (_1)m+1Fm mi (-1)

Fm
——rty————— F
m+1F ) 2m
m
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n

if m is odd

if m is even

H-167 Proposed by L. Carlitz, Duke University, Durham, North Carolina.

Put

S = 1
k FnFn+k
n=1
Show that, for k =0,
2k
(4) FogtoSoge = K+ 1 - >

n=1

k -[4@ - 1]
F F ?

n n+2
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2k+1 K - [g
_ 3 l
(B) Foes1Sake1 = 51 - E+ D, 7T g
n=0

n nt+2

where [a] denotes the greatest integer function.

Special cases of (A) and (B) have been proved by Brother Alfred Brous-
seau, "Summation of Infinite Fibonacci Series,' Fibonacci Quarterly, Vol.
7, No. 2, April, 1969, pp. 143-168.

Solution by the Proposer.

1. Proof of (A). It follows from the identity

Fosok Forsa ~ Frookee Fox = Fp
that
2 1 1
F S - F,.S = F - - F —_—
2k+2 “2k+2 2k "2k 2k+2 Z FnFn+2k+2 2k Z_: Fn Fn+2k
n=1 n=1
(> -
> Frook Fakrn ~ Friairn Fox
— Fn Fn+2k Fn+2k+2
n=1
co
= Z 1
— Fn+2k Fn+2k+2
n=1
© 2k
- :
B F F - F F
n=1 n- n+2 n=1 n- n+2
Since
o0
1
= 1 ,
Fn Fn+2
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we get

2k
_ 1 =
Fowr2Sokes = ForSax = 1 - 2, 7 k =0
p=1 B 02

Then, by addition,

k 2j
_ 1
Fok+2Sgpig = K+ 1 ’E Z T T

I
-
+
-
I
ﬁMN
i =
5|
=
lc|
bl—‘
+
Pt

The inner sum is equal to

D l=k- > 1=k-[fo-1].

Therefore

2k k —[%(n - 1)]

This evidently proves (A).

2. Proof of (B). It follows from the identity

F F =F

ni2k+1 Fok-1 ~ Freok-1 Fawea n

that

399
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I S - F S =
2k+1 "2k+1 2k-1 "2k-1 2k+1 Z F Fn+2k+1 Zk 1 Z=: FnFn+2k 1

o0
Foke1 Fnaok-1 ~ Fako1 Fnaoker

Fo Froroko1 Freoka

n=1

0
N
n=

n+2k-1 n+2k+1

Q0
= “ZF i“ * T Fl ’
_ n - nt+2 n nt+2
n=1 1
so that
2k-1
Fok+1 Saks1 = Fago1 89 = 71 7 Z B F .
n  n+2
Then, by addition,
k 2j-1
Pt Soiar = 51 = K+ 20 D) g F
n - n+2
j=1 n=1
2k-1
_ 1
D e T
n=1 n<2j=2k

The inner sum is equal to
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Therefore,

2k1k_[
Fokr18akr1 = 51 -k+E

n n+2

This proves (B).

Also salved by M. Yoder.

[Continued from page 350. ]
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