A SERIES FORM FOR THE FIBONACCI NUMBERS $\mathrm{F}_{12 n}$
 ROBERT C. GOOD, JR.
 Space Sciences Laboratory, General Electric Company
 King of Prussia, Pennsylvania

ABSTRACT
The Fibonacci Numbers, $\mathrm{F}_{12 \mathrm{n}}$, have been found to be expressible as a series:

$$
F_{12(2 m-1)}=(2 m-1) F_{12} \sum_{j=1}^{m}\left[\frac{C(m-1+j, 2 j-1)}{(m-1+j)}\left(5 \times 12^{4}\right)^{j-1}\right]
$$

and

$$
F_{12(2 m)}=F_{24} \sum_{j=1}^{m}\left[C(m-1+j, 2 j-1)\left(5 \times 12^{4}\right)^{j-1}\right]
$$

where m is the running index and $C(p, q)$ is the combination of p and q. The rationale by which these series were derivedis given: namely, by writing F_{k} in the basic twelve system, recognizing groupings among the digits, and writing a summation series for the corresponding groups within sequential numbers.

1. INTRODUCTION

A list of 571 Fibonacci numbers, F_{k}, given by Basin and Hoggatt [1] shows that F_{1} is 1 or 1^{2} and F_{12} is 144 or 12^{2}. No other such coincidences were found, at least for the second power. Other relations will be shown below for $F_{12 n}$, where n is an integer.

If d_{i} is the digit in the 10^{i-1} place, then there are cyclic relations among the d_{i}. That is, d_{1} of $F_{k+60}=d_{1}$ of F_{k}, and d_{2} of $F_{k+300}=d_{2}$ of F_{k}. The cycling period for d_{3} is not to be found from the numbers in the above table. However, see Hoggatt [2].

To further the study of $\mathrm{F}_{12 \mathrm{n}}$ let us examine Table 1 in which F_{k} is written in the base twelve. The first 72 Fibonacci numbers are shown with X and e representing the tenth and eleventh digits, respectively. If D_{i} is the digit in the $12^{\mathrm{i}-1}$ place, it is evident that D_{1} of $\mathrm{F}_{\mathrm{k}+24}=\mathrm{D}_{1}$ of F_{k}, and D_{2} of $F_{k+24}=D_{2}$ of F_{k}. By examining an expansion of Table 1, one finds that D_{3} of $F_{k+288}=D_{3}$ of F_{k}. These cyclic relations suggest that the digits change in shorter cycles in the base twelve than in the base ten. Therefore, a sequence of digits might be more readily recognized in the base twelve than in the base ten. This paper presents the rationale by which the particular series were found.

Table 1
THE FIRST 61 FIBONACCI NUMBERS IN THE BASE TWELVE

k	F_{k}	k	F_{k}	k	F_{k}
1	1	25	37,501	49	1,611, 102, X01
2	1	26	5X, 301	50	2,533,148,601
3	2	27	95, 802	51	3, e44, 24e, 402
4	3	28	133, e03	52	6,477, 397, X03
5	5	29	209, 705	53	X, 3ee, 627,205
6	8	30	341,608	54	14,876, X03, 008
7	11	31	$54 \mathrm{e}, 111$	55	23,076,42X, 211
8	19	32	890,719	56	37,931,231,219
9	2X	33	1,21e, 82X	57	$5 \mathrm{X}, 9 \mathrm{X} 7,65 \mathrm{e}, 42 \mathrm{X}$
10	47	34	1,Xe0,347	58	96,718, 890,647
11	75	35	3,10e, e75	59	135,504, 32e, X75
12	100	36	5,000,300	60	210,021, 000, 500
13	175	37	8,110,275	61	345,525, 330,375
14	275	38	11,110,575	62	555, 546, 330,875
15	42X	39	19,220, 22 X	63	89X, X6e, 661, 02 X
16	6X3	40	2X, 331, 1X3	64	1,234,3e5,991, 8X3
17	e11	41	47,551, X11	65	1,e13,265,432,911
18	1,5e4	42	75,882, ee 4	66	3,147,65e, 204,5e4
19	2,505	43	101,214, X05	67	5, 05X, 904, 637, 305
20	2, Xe9	44	176, X97, 9e9	68	$8,1 \mathrm{X} 6,363,83 \mathrm{e}, 8 \mathrm{e} 9$
21	6,402	45	278, 0e0, 802	69	11,245, 068,277, 002
22	$\mathrm{X}, 2 \mathrm{ee}$	46	432,e88, 5ee	70	19,42e,40e, Xe6, 8ee
23	14,701	47	6Xe, 079, 201	71	2X, $674,478,171,901$
24	22, X00	48	e22,045,800	72	$47, \mathrm{XX} 3,888,068,600$

2. GROUPS OF FOUR DIGITS

Certain F_{k} 's have been extracted from Table 1 and its logical extension to form Tables $2(\mathrm{a})$ and $3(\mathrm{a}) ; \mathrm{F}_{12 \mathrm{n}}$ are shown where n is an odd integer in Table 2(a) and an even integer in Table 3(a).

The smaller $\mathrm{F}_{\mathrm{k}}{ }^{\prime} \mathrm{S}$ contain a surprising number of zeros so that they almost naturally fall into groups of four digits. For example, in Table 2(a),

$$
F_{60}=210021000500 \quad \text { or } \quad 21-0021-0005-00
$$

in which the four groups contain the small integers $21,21,5$, and 0 . When written in the base ten,

$$
\mathrm{F}_{60}=25 \times 12^{10}+25 \times 12^{6}+5 \times 12^{2} .
$$

Table 2 (a)
FIBONACCI NUMBERS IN BASE TWELVE

n $\mathrm{F}_{12 \mathrm{n}}$	$\mathrm{j}=9$	8	7	6	5	4	3	2	1	$\begin{array}{\|c} \text { Row } \\ \text { R } \end{array}$
$1 \mathrm{~F}_{12}$										1
$3 \mathrm{~F}_{36}$								5	000300	2
$5 \mathrm{~F}_{60}$							21	0021	000500	3
$7 \mathrm{~F}_{84}$						X5	0127	005X	000700	4
$9 \mathrm{~F}_{108}$					441	0799	0483	0106	000900	5
$11 \mathrm{~F}_{132}$				1985	3 e 83	3224	1145	01Xe	000e 00	6
$13 \mathrm{~F}_{156}$			9062	e616	e615	e350	2772	031e	001100	7
$15 \mathrm{~F}_{180}$	3	9274	3784	6922	3571	8676	5576	04X4	001300	8
-				T	- -	-			-	-
$13 \mathrm{~F}_{156}$			9061	$\underline{1} \mathrm{e} 615$	1e615	e350	2772	031e	001100	7
$15 \mathrm{~F}_{180}$		$\underline{3} 9265$	e 3773	116916	8356e	$\underline{28676}$	5576	04X4	001300	8

[^0]Table 3(a) FIBONACCI NUMBERS IN BASE TWELVE

Form Table 4(a) from Table 2(a) by writing the integers within each group in the base ten. In writing this table, certain numbers were "borrowed" from one group to expand a following group. (The "borrowed" digits are indicated in Table 2 (b) by underlining.)

Likewise, form Table 5(a) from Table 3(a) using "borrowed" integers as shown in Table 3(b) as necessary. Further, since $F_{24 n} / F_{24}$ is an integer, form Table 5 (b) by dividing all groups by 322 which is the only group in $\mathrm{F}_{24}\left(\mathrm{~F}_{24}=322 \times 12^{2}\right)$. Tables $4(\mathrm{a})$ and $5(\mathrm{~b})$ are similar, especially the heads of the columns $-1,5,25,125$, etc., which are powers of 5 . Of course, the integer five plays a large role in the expression for Fibonacci numbers

$$
\mathrm{F}_{\mathrm{k}}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{\mathrm{k}}-\left(\frac{1-\sqrt{5}}{2}\right)^{\mathrm{k}}\right]
$$

so one should not be surprised to find the digit 5 prominent in any expression for F_{k}.

By dividing each column by the number at its head, we obtain Table 4(b) from Table 4(a) and Table 5(c) from Table 5(b). Again, this process requires that digits be "borrowed" as noted above.

Table 4(a)
FIBONACCI NUMBERS IN BASE TEN WITH SPECIAL NOTATION

n F ${ }_{\mathrm{n}}$	$\mathrm{j}=\quad 8$	7	6	5	4	3	2	1	$\begin{gathered} \text { Row } \\ \mathrm{R} \\ \hline \end{gathered}$
	$\mathrm{x} 12^{30}$	$\mathrm{x} 12^{26}$	$\mathrm{x} 12^{22}$	$\mathrm{x} 12^{18}$	$\mathrm{x} 12^{14}$	$\mathrm{x} 12^{10}$	$\mathrm{x} 12^{6}$	$\mathrm{x} 12^{2}$	
$1 \mathrm{~F}_{12}$								1	1
$3 \mathrm{~F}_{36}$							5	3	2
$5 \mathrm{~F}_{60}$						25	25	5	3
$7 \mathrm{~F}_{84}$					125	175	70	7	4
$9 \mathrm{~F}_{108}$				625	1,125	675	150	9	5
$11 \mathrm{~F}_{132}$			3,125	6,875	5,500	1,925	275	11	6
$13 \mathrm{~F}_{156}$		15,625	40,625	40,625	19,500	4,550	455	13	7
$15 \mathrm{~F}_{180}$	78,125	234,375	281,250	171,875	66,250	9,450	700	15	8
- -	- -		$-{ }_{\mathrm{T}}^{\mathrm{Tabl}}$	$\overline{4(b)}$	-				-
	$\begin{gathered} \mathrm{x} 12^{30} \\ \mathrm{x} 5^{7} \end{gathered}$	$\begin{gathered} \mathrm{x} 12^{26} \\ \mathrm{x} 5^{6} \end{gathered}$	$\begin{gathered} \mathrm{x} 12^{22} \\ \mathrm{x} 5^{5} \end{gathered}$	$\begin{gathered} \mathrm{x} 12^{18} \\ \mathrm{x} 5^{4} \end{gathered}$	$\begin{gathered} \mathrm{x} 12^{14} \\ \mathrm{x} 5^{3} \end{gathered}$	$\begin{aligned} & \mathrm{x} 12^{10} \\ & \mathrm{x} 5^{2} \end{aligned}$	$\begin{aligned} & \mathrm{x} 12^{6} \\ & \mathrm{x} 5^{1} \end{aligned}$	$\begin{aligned} & \mathrm{x} 12^{2} \\ & \times 5^{0} \end{aligned}$	
$1 \mathrm{~F}_{12}$								1	1
$\begin{array}{lll}3 & \mathrm{~F}_{36}\end{array}$							1	3	2
$5 \mathrm{~F}_{60}$						1	5	5	3
$\begin{array}{lll}7 & \mathrm{~F}_{84}\end{array}$					1	7	14	7	4
$\begin{array}{lll}9 & \mathrm{~F}_{108}\end{array}$				1	9	27	30	9	5
$11 \mathrm{~F}_{132}$			1	11	44	77	55	11	6
$13 \mathrm{~F}_{156}$		1	13	65	156	182	91	13	7
$15 \mathrm{~F}_{180}$	1	15	90	275	450	378	140	15	8

3. SERIES FORIMS

The rows in Tables 4 and 5 will be designated by R and the columns by j counting from right to left. For Table 5(c) the integers in each group are the binomial coefficients or the combinations $C(R-1+j, 2 j-1)$. For Table 4(b), the integers in each group are not the binomial coefficient or the combinations, but can be so expressed when a multiplier and a divisor are included: the expression is

$$
\frac{(2 R-1) C(R-1+j, 2 j-1)}{(R-1+j)}
$$

Table 5(a)
FIBONACCI NUMBERS IN BASE TEN WITH SPECIAL NOTATION

Of course, F_{k} is the sum of the numbers in a row multiplied by the proper factors for each column. It is convenient to write 12^{2} as F_{12} and $322 \mathrm{~F}_{12}$ as F_{24}. One notes that in summing, j runs from 1 to R in every case. In Table 2(a), $n=2 R-1$, and in Table 3(a), $n=2 R$. Therefore, for the odd multiples of 12 , one has

$$
F_{12(2 R-1)}=(2 R-1) F_{12} \sum_{j=1}^{R}\left[\frac{C(R-1+j, 2 j-1)}{(R-1+j)} 5^{j-1} \times 12^{4(j-1)}\right]
$$

and for the even multiples of 12 , one has

$$
F_{12(2 R)}=F_{24} \sum_{j=1}^{R}\left[C(R-1+j, 2 j-1) \times 5^{j-1} \times 12^{4(j-1)}\right]
$$

5. SUMMARY

(A) d_{i} for F_{k} occur in cycles. The cycles of d_{i} are shorter when F_{k} is written in the base twelve than when F_{k} is written in the base ten.
(B) $\mathrm{F}_{12 \mathrm{n}}$ written in the base twelve may be split into groups of four digits. Some borrowing among groups may be needed for the larger numbers to retain integers in the groups.
(C) When the groups are rewritten in the base ten, certain features stand out: (1) For n odd, $\mathrm{F}_{12 \mathrm{n}} / \mathrm{F}_{12}$ is the integer shown in Table 4(a). (2) For n even, $\mathrm{F}_{12 \mathrm{n}} / \mathrm{F}_{24}$ is the integer shown in Table 5(b). (3) Each column of integers is divisible by a power of five given by $5^{\mathrm{j}-1}$ where j is the number of the column counting from right to left. (4) The quotients left after dividing by $5^{\mathrm{j}-1}$ are expressible as combinations and factors using the row and column designators. (5) F_{k} is formed by summing the numbers in its row multiplied by the proper factors for each column.
(D) $\mathrm{F}_{12 \mathrm{n}}$ may be expressed by the summation series that are given in the Abstract.

The author is indebted to Dr. J. F. Heyda and to E. L. Gray for their helpful hints and remarks, and to the author's family for their patience and encouragement.

REFERENCES

1. S. L. Basin and V. E. Hoggatt, Jr., "The First 571 Fibonacci Numbers," Recreational Mathematics Magazine, No. 11, October 1962, pp. 19-30.
2. V. E. Hoggatt, Jr., "A Type of Periodicity for the Fibonacci Numbers," Math. Magazine, Jan. -Feb. 1955, pp. 139-142.
[Continued from page 404.]
3. Brother Alfred Brousseau, "Fibonacci Infinite Series - Research Topic," The Fibonacci Quarterly, Vol. 7, No. 2, pp. 211-217.
4. T. J. L. Bromwich, An Introduction to the Theory of Infinite Series, Macmillan, London, 1959. Page 24, Problem 15.
5. L. B. W. Jolley, Summation of Infinite Series, Dover, New York, 1961. Page 18, Formula 81.

THE FIBONACCI ASSOCIATION
PROGRAM OF THE EIGHTH ANNIVERSARY MEETING
Saturday April 24, 1971
HARNEY SCIENCE CENTER - UNIVERSITY OF SAN FRANCISCO Sponsored by the Institute of Chemical Biology

Welcome: George Ledin, Jr., Institute of Chemical Biology, University of San Francisco
"Divisibility Properties of the Fibonomial Triangle,"
A. P. Hillman, University of New Mexico, Albuquerque, New Mexico
"Broadening Your Fibonacci Horizons,"
Brother Alfred Brousseau, St. Mary's College, California
"Golden and Silver Rectangles,"
Marjorie Bicknell, A. C. Wilcox High School, Santa Clara, Calif.
[Continued on page 436.]

[^0]: _ "Borrowed" integers

