SOME MORE FIBONACCI DIOPHANTINE EQUATIONS V. E. HOGGATT, JR. San Jose State College, San Jose, California

It is well known that the Quadratic Diophantine equation $y^2 - 5x^2 = \pm 4$ has solutions in integers <u>if</u> and <u>only if</u> $y = L_n$ and $x = F_n$, n an integer. For a proof by infinite descent see [2]. The underlying identity is

$$L_n^2 - 5 F_n^2 = 4(-1)^n$$

There are other quadratic Diophantine equations which are Fibonaccirelated. In "Fibonacci to the Rescue" [1], there occurs

(1)
$$x^2 + x(y - 1) - y^2 = 0$$

The proof that solutions in positive integers are possible if and only if $x = F_{2p+1}^2$ and $y = F_{2p+1}F_{2p+2}$ appears novel.

Solve quadratic equation (1) for x. In order for x to be an integer, the quadratic discriminant

$$(y - 1)^2 + 4y^2 = k^2$$
.
Set $y - 1 = m^2 - n^2$, $2y = 2mn$, and $k = m^2 + n^2$ so that

$$m^2 - mn - n^2 = -1,$$

which, when solved for m yields

$$m = \frac{n \pm \sqrt{5n^2 - 4}}{2}$$

Thus m is an integer if and only if $5n^2 - 4 = s^2$. It follows that $n = F_{2p+1}$ and $s = L_{2p+1}$ for some integer p.

It follows that $m = F_{2p+2}$ or $-F_{2p}$ since $L_{2p+1} = F_{2p+1} + 2F_{2p}$. Thus $y = mn = F_{2p+2}F_{2p+1}$ or $-F_{2p+1}F_{2p}$. Since $k = m^2 + n^2$, it follows that, for

while for $m = -F_{2p}$, $n = F_{2p+1}$,

$$x = -F_{2p}^2$$
 or F_{2p+1}^2 and $y = -F_{2p+1}F_{2p}$.

These are the only integral solutions to $x^2 + x(y - 1) - y^2 = 0$.

[Continued on page 448.]