SOME MORE FIBONACCI DIOPHANTINE EQUATIONS

V. E. HOGGATT, JR.

San Jose State College, San Jose, California

It is well known that the Quadratic Diophantine equation $y^{2}-5 x^{2}= \pm 4$ has solutions in integers if and only if $y=L_{n}$ and $x=F_{n}, n$ an integer. For a proof by infinite descent see [2]. The underlying identity is

$$
L_{n}^{2}-5 F_{n}^{2}=4(-1)^{n}
$$

There are other quadratic Diophantine equations which are Fibonaccirelated. In "Fibonacci to the Rescue" [1], there occurs
(1)

$$
x^{2}+x(y-1)-y^{2}=0
$$

The proof that solutions in positive integers are possible if and only if $\mathrm{x}=$ $F_{2 p+1}^{2}$ and $y=F_{2 p+1} F_{2 p+2}$ appears novel.

Solve quadratic equation (1) for x . In order for x to be an integer, the quadratic discriminant

$$
(y-1)^{2}+4 y^{2}=k^{2}
$$

Set $y-1=m^{2}-n^{2}, \quad 2 y=2 m n$, and $k=m^{2}+n^{2}$ so that

$$
m^{2}-m n-n^{2}=-1
$$

which, when solved for m yields

$$
\mathrm{m}=\frac{\mathrm{n} \pm \sqrt{5 \mathrm{n}^{2}-4}}{2} .
$$

Thus m is an integer if and only if $5 n^{2}-4=s^{2}$. It follows that $n=F_{2 p+1}$ and $s=L_{2 p+1}$ for some integer p.

It follows that $m=F_{2 p+2}$ or $-F_{2 p}$ since $L_{2 p+1}=F_{2 p+1}+2 F_{2 p}$.
Thus $y=m n=F_{2 p+2} F_{2 p+1}$ or $-F_{2 p+1} F_{2 p}$. Since $k=m^{2}+n^{2}$, it follows that, for

$$
\begin{gathered}
m=F_{2 p+2} \quad \text { and } \quad n=F_{2 p+1}, \\
x=-F_{2 p+2}^{2} \quad \text { or } \quad F_{2 p+1}^{2} \quad \text { and } \quad y \stackrel{F}{=}{ }_{2 p+2} F_{2 p+1},
\end{gathered}
$$

while for $m=-F_{2 p}, n=F_{2 p+1}$,

$$
x=-F_{2 p}^{2} \quad \text { or } \quad F_{2 p+1}^{2} \quad \text { and } \quad y=-F_{2 p+1} F_{2 p}
$$

These are the only integral solutions to $x^{2}+x(y-1)-y^{2}=0$.
[Continued on page 448.]

