$$\mathbf{F}_{n+1} = \alpha \mathbf{F}_n + \mathbf{A}_n \mathbf{F}_n$$

$$\alpha \mathbf{F}_n = \mathbf{F}_{n+1} - \mathbf{A}_n \mathbf{F}_n ;$$

if n is odd, from Equation (2),

$$\alpha \mathbf{F}_{n} = \mathbf{F}_{n+1} + \mathbf{B}_{n} \mathbf{F}_{n}.$$

These equations show that αF_n will be less than F_{n+1} if n is even, and will be greater than F_{n+1} if n is odd.

As n increases, A_n and B_n decrease fast enough that, if $n \ge 2$, $A_n F_n \le 0.5$ and $B_n F_n \le 0.5$.

Thus, if $n \ge 2$, it is possible to determine whether n is even or odd by multiplying F_n by α , then seeing if the product is greater than or less than the nearest integer which will be F_{n+1} . For example, given that $F_n =$ 21, 21 × 1.618 = 33.978. This is less than the nearest integer, 34, thus a is even.

Also solved by the Proposer.

[Continued from page 437.] When X and Y are -ve integers,

 $X = (2 - L_{4k})/5$, $Y = (X - F_{4k})/2$, $k = 1, 2, 3, \cdots$ And the general solution in +ve integers is:

 $X = (2 + L_{4k-2})/5 = F_{2k-1}^2 Y = (X + F_{4k-2})/2 F_{2k-1}F_{2k}$

The author found the first set of integral solutions while others were found by Guy Guillotte

REFERENCES

1. J. A. H. Hunter, "Fibonacci to the Rescue," <u>Fibonacci Quarterly</u>, Oct. 1970, p. 406.

 David Ferguson, "Letters to the Editor," <u>Fibonacci Quarterly</u>, Feb. 1970, p. 88.

448