$$
N=\frac{\prod_{i=1}^{n-1} F_{i}\left(\prod_{i=1}^{n} F_{i}\right)^{m-1} \prod_{i=1}^{n+1} F_{i}}{\prod_{i=1}^{m}\left(\prod_{j=1}^{k_{i}-1} F_{j}\left(\prod_{j=1}^{k_{j}} F_{j}\right)^{m-1} \prod_{j=1}^{k_{i}+1} F_{j}\right)}
$$

where $\mathrm{n}=\mathrm{k}_{1}+\mathrm{k}_{2}+\cdots+\mathrm{k}_{\mathrm{m}}$ 。

REFERENCES

1. Walter Hansell and V. E. Hoggatt, Jr., "The Hidden Hexagon Squares," Fibonacci Quarterly, Vol. 9, No. 2, p. 120.
2. Eugene Kohlbecker, "On a Generalization of Multinomial Coefficients for the Fibonacci Sequence," Fibonacci Quarterly, Vol. 4, No. 1, pp. 307312.
3. V. E. Hoggatte, Jr., "Generalized Binomial Coefficients and the Fibonacci Numbers," Fibonacci Quarterly, Vol. 5, No. 4, pp. 383-400.
4. Henry W. Gould, "Equal Products of Generalized Binomial Coefficients," Fibonacci Quarterly, Vol. 9, No. 4, pp. 337-346.

[Continued from page 488.]
where

$$
\mathrm{H}_{\mathrm{n}+2}=\mathrm{H}_{\mathrm{n}+1}+\mathrm{H}_{\mathrm{n}} .
$$

The following identities were obtained from (13.2):

$$
\begin{align*}
& H_{4 n+4+p}-H_{2 n+2+p}=\sum_{i=0}^{n}\binom{2 n+1-i}{i} H_{3 i+3+p} \tag{13.10}\\
& H_{8 n+8+p}-5^{n+1} H_{4 n+4+p} \\
& \quad=3 \sum_{i=0}^{[n / 2]}\binom{2 n+1-2 i}{2 i} 5^{i_{1}} H_{12 i+3+p} \\
& \quad+3 \sum_{j=0}^{[(n-1) / 2]}\binom{2 n-2 j}{2 j+1} 5 j_{\left(H_{0} L_{12 j+8+p}+H_{1} L_{12 j+9+p}\right)}
\end{align*}
$$

Many more Fibonacci identities are readily obtainable from (13.1) and (13.2).
14. REMARKS ON THE PAPER

BY HOGGATT, PHILLIPS, AND LEONARD [5]
All the 22 identities in [5] are special cases of our general results. The 22 identities appear in the Master's thesis of Leonard [6]. The notation (A, 1.6) means that identity A of [5] is a special case of our identity (1.6). Thus, we have the remaining identity pairings for special cases of our results: ($\mathrm{B}, 1.8$), ($\mathrm{C}, 4.7$), ($\mathrm{D}, 4.3$), ($\mathrm{E}, 1.6$), ($\mathrm{F}, 1.8$), ($\mathrm{G}, 4.7$), ($\mathrm{H}, 4.3$), (I, 1.15), (J, 1.16), (K, 1.11), (L, 1.13), (M, 1.9), ($\mathrm{N}, 1.12$), ($\mathrm{P}, 4.8$), ($\mathrm{Q}, 4.4$), ($\mathrm{R}, 4.5$), $(\mathrm{S}, 4.9)$, $(\mathrm{T}, 1.16)$, $(\mathrm{U}, 1.15),(\mathrm{V}, 1.16)$, and ($\mathrm{W}, 1.15$).

Since A and E are obtained as special cases of our (1.6), A and E are therefore not independent, i. e., by a change of parameters, A can be transformed to E and vice versa. Thus, a perusal of the above pairings gives us the following dependent identity grouping: (A, E; 1.6), (B, F; 1.8), (I, U,W; 1.15), (J,T,V; 1.16), (D,H; 4.3), (C,G; 4.7). Since K, L. M, N, P, Q, R, and S are independent, the 22 identities A, B, \cdots, W, contains now only 14 independent identities.

REFERENCES

1. John H. Halton, "On a General Fibonacci Identity," Fibonacci Quarterly, Vol. 3 (1965), pp. 31-43.
2. John Vinson, Modulos m properties of the Fibonacci Numbers, Master's Thesis, 1961, Oregon State University, pp. 14-16.
3. Verner E. Hoggatt, Jr., and Marjorie Bicknell, "Some New Fibonacci Identities," Fibonacci Quarterly, Vol. 2, 1964, pp. 29-32.
4. L. Carlitz and H. H. Ferns, "Some Fibonacci and Lucas Identities," Fibonacci Quarterly, 8 (1970), pp. 61-73.
5. V. E. Hoggatt, John W. Phillips, and H. T. Leonard, Jr., "Twenty-four Master Identities, " Fibonacci Quarterly, 9 (1971), pp. 1-17.
6. H. T. Leonard, Jr. , Fibonacci and Lucas Number Identities and Generating Functions, Master's Thesis, January, 1969, San Jose State College.
7. John Wessner, "Binomial Sums of Fibonacci Powers," Fibonacci Quarterly, 4 (1966), pp. 355-358.
