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1. INTRODUCTION 

The purpose of this paper is to give an exposition of certain results due 
to J. A. Fridy [1], [2] , using a somewhat different approach. In [2] , Fridy 
considers a non-increasing sequence 

{r.f 

of real numbers with 

.lim r. = 0 
1 —•oo 1 

and defines5 for two given non-negative integer sequences 

{k.} 

and 

the sequence {r.} to be a {k5m} base for the interval (-9|S,S) if for each 

x £ (-S*,S), there is an integer sequence 

K>; 
such that 

J^ a. r. 
Z-i i i 

1 

477 
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with -m. ^ a. ^ k. for each i ^ 1, where 
1 1 1 5 

oo 

S = V* k. r. 
t-j 1 i 

1 

and 
00 

^ = ]C mi ri • 
1 

When the {k.} and {m.} sequences are specialized to k. = n - 1 for 
all i ^ 1 and m. = 0 for all i ^ 1, Fridy [1] has termed the resulting 
{k,m} base an ffn-base?? and developed a necessary and sufficient condition 
for a sequence {r.} to be an n-base. He also notes in a subsequent paper 
[2] that a necessary and sufficient condition for a 2-base had been given by 
Kakeya [3] much earlier. The main result of Fridy!s second paper derives 
from a Lemma which gives a necessary and sufficient condition for {r.} to 
be a {k,0} base ( [2] , pp. 194-196). Since an n-base is a specialization of 
a {k,0} base, this latter condition for a {k,0} base subsumes the earl ier 
result for an n-base in [1], Moreover, the derivation of the necessary and 
sufficient condition for a {k,m} base follows directly ([2] , Theorem 1, pp. 
196-197) once the condition for a {k,0} base is established. 

Our point of departure here is to show that the characterizing condition 
for a {k,0} base is itself almost immediate from Kakeya1 s condition for a 
2-base. This follows from the observation that {r. } is a {k,0} base if and 
only if a certain augmented sequence (obtained by repeating each r . , in order 
k. times) is a 2-base; the details are given below in Theorem 1. (cf. the 
development in [ 4] . ) 

In order to keep the presentation self-contained, a proof of Kakeya1 s 
result is also given as Lemma 1, where we have emphasized the possibility 
of obtaining expansions of the required form with an infinite number of the 
expansion coefficients being equal to zero. This particular constraint will 
be seen to be important in Section 3, which deals with uniqueness of the ex-
pansions. 
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As illustrations of some of the results , we show in Section 4 that the 
Cantor expansion is a special case in which unique expansions are obtained* 
A Lemma is then established which gives a useful sufficient condition for the 
existence of expansions (non-unique, in general), and this Lemma is applied 
to show that an arbitrary positive number may be expressed (non-uniquely) as 
a sum of distinct reciprocal primes, A similar result holds for the Fibonacci 
numbers 

r -100 

{ F i } i 

where F4 = F2 = 1 and F +- = F + F - for n ^ 2; that i s , any real 
number 

c E ^ 

may be represented (again, non-uniquely) as a distinct sum of reciprocal Fib-
onacci numbers. Along the same lines, we show that any real number 

( oo oo ^ 

"Lf S T. 
i x i \ 

has an expansion of the form 

XJ FT 9 

1 * 

where each €. = €.(x) is either a +1 or - 1 . 

2. EXISTENCE OF REPRESENTATIONS 

Lemma 1: (KAKEYA): Let 
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(r.f 
i i 

be a non-increasing sequence of real numbers such that 

and 

.lim , r . = 0 
l -*« I 

(1) r
p - Z) ri f o r P = 1. 2, 3, 

p+1 

If 

Zri = S • 

finite or infinite, then for each x is [0,S), there exist binary coefficients 
a. = a. (x) such that i l 

(2) x = E ai ri 
i 

and a. = 0 for infinitely many values of L 
Proof. The case S = +oo is straightforward and left to the reader. It 

is also apparent that the Lemma holds for x = 0. 
Now, for S finite, let x be given in (0,S). Choose nA as the smallest 

positive integer such that r n — x. If equality holds, the lemma is proved 
for x; if not, choose n2 as the smallest integer >% for which 

r < x - r , n2 n* 
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Again, equality at this stage implies the result. Otherwise, we continue the 
process, and in general, n, is the smallest integer >n. - for which 

k-1 
< x - J^ r n, Z^ n. 

k 1 i 

The process either terminates with an equality sign after a finite number of 
steps, or else we obtain an infinite series 

4-j n. 
i i 

we focus our attention on the latter case. Clearly, 

L^j n . 
1 * 

converges since 

P 

i x 

for any choice of p. Let 

JLmd n . 
1 l 

Firs t , we show n. > n._- + 1 for infinitely many values of i. If not, there 
exists a smallest integer k such that n , + . = n, + j for j = 1, 2, ••• . 

Then n, > 1, since 
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^ x < y^ r. = S 
1 

If k = 1, 

n r 
iii 

thereby contradicting our choice of rij. Hence , k > 1, and we write 

k-1 <*> 

' = E v+ E r. 
1 ' \ 

with n. > n. - + 1 from our definition of k. Then k k-1 

k-1 k-1 °o 
x - E v - f* - E v = E ri * V 1 5 

1 * 1 * a k 

k 
which implies n, = n, - + 1, a contradiction. We conclude n. > n. - + 1 

^ k k-1 i l - l 
for infinitely many i. 

Lastly, we show ft = x. For, if not, /3 < x and there exists N such 
that p ^ N implies 

oo p 

rn * * - 0 = * - 2>n. * * - £>n_ • 

which in turn implies n - = n + 1 for each p ^ N, a contradiction to our 
previous assertion, q. e. d. 

The principal Lemma in Fridy's paper ( [2] , pp. 194-196) may now be 
derived quite simply from. Lemma 1: 
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Theorem 1. Let 

483 

be a non-increasing sequence of real numbers with .lim r. = 0 and let 
1 — ¥ CO 1 

be an arbitrary sequence of positive integers. Then every real number x in 

°> E k i r i 

can be expanded in the form 

(3) 
i 

with jS. integers satisfying 0 < /3. < k. for i = 1, 2, • • • if and only if 

(4) r < y k. r. 
p < " i i 

p+1 

for p = 1, 2? 3, 

Further5 the expansion in (3) can be accomplished such that 0. < k. for in-
finitely many values of i. 

Proof, To show necessity of (4), assume there exists m > 0 such that 

r > m y k. r. 
m+1 

and choose x such that 
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E v, < x < r m 
m+1 

If x has an expansion of the form (3), we must have ft = ft = • ° • = £ = 
m 

0 since x < r , but then 

x = Zvi s Z kiri 
m+1 m+1 

< x , 

a contradiction. 
Conversely, assume (4) holds and consider the sequence 

i%>: • 

defined to consist of each term r. , in order5 repeated k. times; that is 

hif = ri> r4, ri> r2> *2> *2, r2, °-8 > V r n , r n , 

kj times k2 times kn times 

Using (4), we observe 

?p < Zw g i 
p+1 

for p = l , 2 , 3 , ° " „ Thus, Lemma 1 guarantees binary coefficients a. 
such that any x in 

°. X>i 
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has an expansion of the form 

485 

(5) x = £ ai h 
i 

with- a^ = 0 for infinitely many i. Replacing (5) in terms of the r.9 and 
noting 

we have that any x in 

E g i = E ki ri > 

>. E v i 

can be written in the form 

x = E ^ ri 
i 

with 0 < /3. < k. and j3. < k. for infinitely many i. q. e. cL 

3. UNIQUENESS OF REPRESENTATIONS 

Thus s condition (4) is both necessary and sufficient for the existence 
of expansions in the form (3). We give a result next in Lemma 2 concerning 
the uniqueness of such expansions independently of the existence question. 

Definition. Let 
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be a non-increasing sequence of real numbers with ,lim0 r. = 0 and let 

be an arbitrary but fixed sequence of positive integers. Let 

{ft }°° and {y. f 
1 1 i i 

be two sequences of integers which satisfy 0 ^ /3. ^ k. and 0 ^ y. ^ k- f ° r 

i = 1, 2, 3, • " . Further, let /3. < k. for infinitely many i and y. < k. 
for infinitely many L Then 

will be said to possess the uniqueness property [Propertjf U] if and only if 
the equality 

E Pi ri = E n ri 

implies j3. = y. for each i ^ 1. 
Lemma 2. Let 

{ r . } and {k.} 
L i J i L i J ! 

be given as in the preceding definition. Then 

{',>; 

possesses Property U if 

(6) r 2= S^ k. r. for p = 1, 2, 3, 
p i -^ i i ^ 

p+1 
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Proof. Assume (6) holds and that 

E^iri = Er^i 

with {p. } and {y.} as in the definition. If the two representatives are not 
identical, let m be the smallest positive integer i such that p. f y.. Then 

B r + J> B. r. = y r + / y. r. , r m m JLJ ' I I #m m L^J §i I J 

m+1 m+1 

or assuming p > y without loss of generality, 

(7) (j8 - y ) = Y\ (y. - jS.) r. 
m+1 

Now, y. - p. < k. for some i ^ m + 1 (otherwise y. = k. for all i ^ m 
1, contrary to choice of {y.}), and there fore, from (7), 

r < (p - y ) r < } J k. r. , 
m m #m m x—4 \ \ 

m+1 

contradicting condition (6) for p = m* We conclude y. = p. for all i ^ 1, 
giving Property U* q. ee d, 

Lemma 3e Take 

{ r . } and {k.} 
i J i i i 

as before. If 
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r 
P S k. r . i 1 

for p = 1, 2 , 3 , • •• , then 

(8) r
p

 = S k i r i (p = 1, 2f 3, ••• ) 
p+l 

i s a n e c e s s a r y and sufficient condition for {r . } to p o s s e s s P r o p e r t y U. 

Proof, Sufficiency follows from L e m m a 2. To show neces s i t y , a s sume 

that there ex i s t s an in teger m > 0 such that 

r < V^ k. r. , m L-J i i 
m+1 

and choose x to satisfy 

r < x < m ^»^ I I E k. r . 
I I 

m+1 

By Theo rem 1, x has an expansion of the form 

= 2>iri x 
1 

with 0 < p. < k. for i ^ 1 and p. < k. for many i. F u r t h e r , at l e a s t one 

of the coefficients j31? /32 9 • " , / 3 m m u s t be different f rom z e r o . 

Since the sequence 
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m+1 

also satisfies the conditions of Theorem 1 and 

oo 

x ^ E ki ri 9 

-m+l 

the number x has an expansion of the form 

489 

m+l 

with 0 < y . < k. for i > m + 1 and y. < k. for infinitely many i. Thus 

m+l 1 

and (3. = y. does not hold for all I > 1, showing Property U does not. hold. 
q. e. d. 

Theorem 2. Let 

{r.}°° and {kf 

be sequences as in Theorem 1. Then every real number x in 

5 £**J i i 

has one and only one expansion 
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OO 

(8) x = 2 h ri 
i 

with 0 < jS. < k. for 1 ^ 1 and p. < k. for infinitely many i, if and only 
if 

(9) r = T* k. r. 
v ' p L-* l l 

p+1 

for p = 1, 2, 3, •• • , or equivalently, 

do) r = s • rr —-ip 
P i=l 

for all p ^ 1, where 

E k. r. I I S 
1 

Proof. From Theorem 1, we must have 

E k. r. i l r < 
P 

p+1 

for p ^ 1, while from Lemma 3 and the uniqueness requirement, 

v = y^ k. r. p L~J i I 
p + 1 
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for p > 1. Equation (10) follows on noting 

r , - = 7 k. r. = r - k ,- r p+1 LJI i i p p+1 p+1 9 

p+2 

or 

r 
P 

for p > 1. Since 

OO 

ri = 2 ki ri = S " r i k i ' 
2 

we have 

r i=TTTE7 • 

and iteration using (11) leads to (10). q. e.d. 

40 APPLICATIONS 

CANTOR EXPANSION ([5] , Theorem 1.6, p. 7): "Let a1? a2? a3, °«° 
be a sequence of positive integers, all greater than 1. Then any real number 
a is uniquely expressible in the form 

(12) a = CA + Y* 1 -
v ^ JLJ at a2 • •• â  

i=l 

with integers c. satisfying the inequalities 0 ^ c, ^ a. - 1 for all i — 1 
and c. < a. - 1 for infinitely many L ?f 
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Proof. In T h e o r e m 2 , identify 

1 
r . = 

l ai a2 • • • a. 

and k. = a. - 1 for i ^ 1. Then condition (11) i s c l ea r ly sat isf ied. Now, 

for given a, l e t c^ = [a], the g r e a t e s t in teger contained in a, so that 

0 < a - [a] < 1 = £ k. r. = J^ 
a. - 1 

l 

at a2 • • • &i 
1 

Then T h e o r e m 2 impl ies a unique expansion in the form (12) as requ i red . 

q. e. d. 

Next , we give a useful sufficient condition for the exis tence of expan-

sions as specified in T h e o r e m 1. 

L e m m a 4. A sufficient condition for 

r
P * E ki ri <p * w 

p+i 

i s 

(13) r < (k _ + l ) r _Ll 
p p+1 p+1 

for all p ^ 1. 
Proof. Assume (13) i s sat isf ied. Then 

E ri * E ( k
i + i+ 1 ) r

i + i = E ki+i r
i + i + E r

i+i 
P + I p+i p+i p+i 

Thus , 
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OO OO 

Vi = E ri - E v i - E- k
i+i v i = E ki ri - V i Vi 

p+i p+ i p+ i p+i 

o r 

(1 + ViVi£ Ekiri 
P + I 

Since r ^ (1 + k i n ) r , - , we have p p+1 p+1 

r < y™^ k. r . 

p+1 

for all p ^ 1 as required* 
Example 1. Let x be an a r b i t r a r y r ea l number satisfying 

0 < x 
4-J ± -

1 * 
E FT 

where F i = F 2 = I t F - = F + F - for n ^ 2 specify the Fibonacci 

n u m b e r s , Then 

OO 

a. x = E F : • F . 
1 l 

with a. = a.(x) a binary coefficient for each i ^ 1. F u r t h e r , a. = 0 for 

infinitely many L 

Proof. Here k. = 1 for all i ^ 1. C lea r ly 
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-1 

is non-increasing and 

.l im = - = 0 
1 _ * oo F . 

i 

By condition (13) of Lemma 4, a sufficient condition for Theorem 1 to be ap-
plicable is r ^ 2r - s or equivalent^ 

where 

F" s F1" (p ~ 1} ' 
p P+i 

-̂14' 
But this is merely the condition F - ^ 2F , which is obvious for p ^ 1 
and the result follows from Theorem 1. 

Example 2. Let x be an arbitrary real number satisfying 0 < x <-**>., 

Then 

a. 
* " E-s: • 

where 

{Pi} = {2, 3, 5, 7, 11, ••• } 
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is the sequence of primes and a. = a.(x) is a binary coefficient for each i ^ 
1. Further a. = 0 for infinitely many L 

Proof. A gain ? we apply Theorem 1 with 

JL 

for i ^ 1 and k. = 1 for all i ^ 1. Condition (13) reduces to p. - ^ 2p.9 

and this latter inequality holds for all i ^ 1 by Betrand?s postulate ([6]5 p. 
171). Since 

is non-increasing and 

p i ' i 

. l im — = 0, 
1 —»°o p . 

the result follows from Theorem 1 and the well-known divergence of the series 

z^ P 

( [6] , Theorem 8B3, p. 168). 
Example 39 Let x be an arbitrary real number with 

2J F| ~ X ~ 2~J FJ 

Then x possesses an expansion of the form 

(i4) x = E F: » 
i 

6. 

L 
i 



496 GENERALIZED BASES FOR REAL NUMBERS Dec. 1971 

where each €. = €.(x) is either +1 or - 1 . 
Proof o For 

^ l -Zir> Eir 

we have 

(' 00 \ 00 

so that by Example 1, 

a. 

where each a. is a binary digit, Equivalently, 

i 

and we note that 2a. - 1 is either +1 or -1 depending on whether a. = 1 
or a. = 0, respectively; this establishes the expansion in the stated form. 
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