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Dalhousie University is located in Mi’kma’ki, the
ancestral and unceded territory of the Mi’kmagq.



Welcome

Welcome to Dalhousie University, to Halifax, and for many of you,
to Canada! This conference begins as we celebrate Canada Day (July
1st), with Monday, July 2nd a national holiday this year. Canada
celebrates the 151st anniversary of Confederation, an act that took
place in Charlottetown in the neighbouring small province of Prince
Edward Island.

We are now also exactly half-way through Dalhousie University’s bi-
centennial year, and this Fibonacci Conference is an official part of the
scientific events that mark this significant anniversary. It is perhaps
appropriate that the 18th International Conference on Fibonacci Num-
bers and Their Applications takes place in '18, at a university that was
founded in 1818. Needless to say, 18 is not a Fibonacci number, but it
is a Lucas number, and thus connected with the second-most important
name attached to this conference.

Some words of thanks are now in order. We received financial sup-
port for this conference from AARMS (the Atlantic Association for
Research in the Mathematical Sciences) and from the Faculty of Sci-
ence of Dalhousie University. 1 would also like to acknowledge the
support of the Department of Mathematics and Statistics and its office
staff, and finally I’d like to thank Asmita Sodhi, Mason Maxwell, and
especially Keith Johnson for their help and support.

I thank you all for coming, and I wish everybody a very pleasant
stay in Halifax, and an interesting and successful conference.

Karl Dilcher.
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Conference Schedule

All talks take place in the “Scotiabank Auditorium” of the Marion
McCain Arts & Social Sciences Building.

Monday, July 2

Morning Session

8:15 Registration opens
8:45 Opening Remarks
9:00-9:25 Christian Ballot:
Variations on Catalan Lucasnomials
9:30-9:55 Heiko Harborth:
A Conjecture for Pascal’s Triangle
10:00-10:30 — Coffee Break —
10:30-10:55 William Webb:
What Makes A “Nice” Identity?
11:00-11:25 Arthur T. Benjamin:
Some Bingo Paradoxes
11:30-11:55 Steven Miller:
From Monovariants to Zeckendorf Decompositions
and Games
12:00-2:00 — Lunch Break —
Note: For members of the Fibonacci Association Board:
12:00-2:00  Board Meeting & Luncheon

Dalhousie University Club
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Monday, July 2

Afternoon Session

2:00-2:25

Sadjia Abbad:

Companion Sequences Associated to the r-Fibonacci
Sequence

2:30-2:55

Paul Young;:
The Power of 2 Diwiding a Generalized Fibonacci Number

3:00-3:30

— Coffee Break —

3:30-3:55

Antara Mukherjee:

The Geometric Interpretation of Some Fibonacci
Identities in the Hosoya Triangle

4:00-4:25

J. C. Saunders:

On (a,b) Pairs in Random Fibonacci Sequences

4:30-4:55

Marc Chamberland:

Arctan Formulas and P1




Tuesday, July 3

Morning Session

9:00-9:25 Orli Herscovici:
New Degenerated Bernoulli and Euler Polynomials
Arising from Non-Classical Umbral Calculus
9:30-9:55 Lin Jiu:
Bessel Random Walks and Identities for Higher-Order
Bernoulli and Euler Polynomials
10:00-10:10 — Group Photo — Location to be announced —
10:10-10:30 — Coftee Break —
10:30-10:55 Sam Northshield:
Re3counting the Rationals
11:00-11:25 Larry Ericksen:
Properties of Polynomials that Encode Representations
11:30-11:55 Paul K. Stockmeyer:
Discovering Fibonacci Numbers, Fibonacct Words,
and a Fibonacci Fractal in the Tower of Hanoi
12:00-1:30 — Lunch Break —
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Tuesday, July 3

Afternoon Session

1:30-1:55 Susanna Spektor:

On a iy1-Norm Estimate of Sums of Dependent Random
Variables Using Simple Random Walks on Graphs

2:00-2:25 Meliza Contreras Gonzélez:
Counting Independent Sets on Bipolygonal Graphs

2:30-2:55 Thotsaporn ‘Aek’ Thanatipanonda:

Statistics of Domino Tilings on a Rectangular Board

3:00-3:30 — Coffee Break —

3:30-3:55 Elif Tan:
A Note on Conditional Divisibility Sequences

4:00-4:25 Tanay Wakhare:
Structural Identities for Multiple Zeta Values

4:30-4:55 Paul Young:
Global Series for Zeta Functions
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Wednesday, July 4

Morning Session

9:00-9:55 The Edouard Lucas Memorial Lecture
Hugh C. Williams:

Mersenne, Fibonacci and Lucas:
The Mersenne Prime Story and Beyond

10:00-10:30 — Coffee Break —

10:30-10:55 Burghard Herrmann:

How Integer Sequences Find Their Way Into Areas
Outside “Pure Mathematics”

11:00-11:25 Dale Gerdemann:

Images From Zeckendorf and Other Numerical
Representations

11:30-11:55 Bruce Boman:

Geometric Branching Patterns Based on the p-Fibonacci
Numbers: Self-Similarity Across Different Degrees of
Branching and Multiple Dimensions

12:00-1:30 — Lunch Break —

1:30 Afternoon Excursion
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Thursday, July 5

Morning Session

9:00-9:25 Peter Anderson:
More Remarkable Continued Functions
9:30-9:55 Bir Kafle:
Pell Numbers of the Form 2% + 3 4 5¢
10:00-10:30 — Coftee Break —
10:30-10:55 Karyn McLellan:
A Problem on Generating Sets Containing Fibonacci
Numbers
11:00-11:25 Curtis Cooper:
Some Generalized High Order Fibonacci Identities
11:30-11:55 Scott Cameron:
A Linear Algebra Problem Related to Legendre
Polynomials
12:00-1:30 — Lunch Break —
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Thursday, July 5

Afternoon Session

1:30-1:55 Steven Edwards:

Generalizations of Delannoy Numbers

2:00-2:25 Barry Balof:
Selfish Sets, Posets, Tilings and Bijections

2:30-2:55 Michael Allen:

A New Combinatorial Interpretation of the
Fibonacci Numbers Squared

3:00-3:30 — Coffee Break —

3:30-3:55 Russell Jay Hendel:

Proof and Formulation of a Tagiuri-Generating-Method
Congecture

4:00-4:25 Bob Bastasz:
Digital Loop Systems
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Friday, July 6

Morning Session

9:00-9:25 Clark Kimberling:

Linear Complementary Equations and Systems

9:30-9:55 Abdullah Al-Shaghay:
Irreducibility and Roots of a Class of Polynomials

10:00-10:30 — Coffee Break —

10:30-10:55 William Webb:
Proving Identities In Arbitrary Fields

11:00-11:25 Osman Yurekli:

A Pascal-like Triangle From a Special Function

11:30-11:55 Burghard Herrmann:
Visibility in a Pure Model of Golden Spiral Phyllotazis

12:00-1:30 — Lunch Break —
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Friday, July 6

Afternoon Session

1:30-1:55

Prapanpong Pongsriiam:

Fibonacci and Lucas Numbers Which Have Exactly
Three Prime Factors and Some Unique Properties
Of Flg and ng

2:00-2:25

Christophe Vignat:

Finite Generating Functions for the Sum-of-Digits
Sequence

2:30-2:55

Kouichi Nakagawa:

Ezact Periodicity of Generalized Fibonacci and
Tribonacci Sequences

3:00-3:30

— Coffee Break —

3:30-4:30

Clark Kimberling (Coordinator):

Problem Session

4:30

Closing Remarks
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Social Activities

Sunday, July 1:

4:00-9:00 pm: Registration desk is open — conference material can be
picked up.

7:00-9:00 pm: Welcoming Reception.

Both in the lobby of the Marion McCain Arts & Social Sciences Build-
ing.

Tuesday, July 3:

10:00 am: Group photo; location to be announced.

Wednesday, July 4:

1:30 pm: Beginning of afternoon excursion to Peggy’s Cove and Lunen-
burg.

Bus pick-up on Campus; exact location to be announced.

Thursday, July 5:
Conference Dinner in Hubbards (around 45 Minutes from Halifax).

Locations and time for bus pick-up to be announced.

Saturday, July 7:

Optional full-day trip to Cape Split with hike to the tip of the penin-
suala there. The hike is relatively easy, and is 1 1/2 hours each way
from the parking lot. The trip to Cape Split also offers some scenic
views along the way. Transportation will be with private vehicles or a
rented van, depending on the number of participants. There will be a
sign-up sheet during the conference.
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Abstracts

The Edouard Lucas Memorial Lecture

Hugh C. Williams, University of Calgary, Calgary, AB, Canada
Mersenne, Fibonacci and Lucas:
The Mersenne Prime Story and Beyond

On Dec. 26 of last year, it was announced that the 50th known
Mersenne prime had been identified. This is an enormous number
of 23,249,425 decimal digits and is currently the largest known prime
number. In spite of the size of this number we are able to prove it
prime by a simple algorithm that was discovered in 1876 by Edouard
Lucas. Lucas discovered this procedure as a result of his examination
of the properties of Fibonacci numbers.

In this talk T will briefly discuss the development of the concept
of a Mersenne prime and then describe Lucas’ ideas concerning how
the primality of such numbers can be established. I will also detail
some aspects of Lucas’ career and conclude with a discussion of his
unsuccessful search for a generalization of his technique.
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Abstracts — Contributed Talks

Abstracts are listed in alphabetical order by speaker.

Sadjia Abbad, Saad Dahlab University, Blida, Algeria
Companion Sequences Associated to the r-Fibonacci Sequence

In this talk, we define the r-Lucas sequences of type s. These se-
quences constitute a family of companion sequences of the generalized
r- Fibonacci sequences. We establish the corresponding Binet formula
and evaluate generating functions. Therefore we extend the definition
of Vn(r’s) to negative n. Also, we exhibit some convolution relations
which generalize some known identities such as Cassinis.

(Joint work with Hacene Belbachir.)

Michael A. Allen, Mahidol University, Bangkok, Thailand

A New Combinatorial Interpretation of the Fibonacci Numbers Squared

We consider the tiling of an n-board (a 1 x n array of square cells
of unit width) with half-squares (3 x 1 tiles) and (1, 1)-fence tiles. A
(%, %)—fence tile is composed of two half-squares separated by a gap of
width % We show that the number of ways to tile an n-board using
these types of tiles equals F7,; where F), is the nth Fibonacci number.
We use these tilings to devise combinatorial proofs of identities relating
the Fibonacci numbers squared to one another. Some of these identities

appear to be new.

Abdullah Al-Shaghay, Dalhousie University, Halifax, NS, Canada
Irreducibility and Roots of a Class of Polynomials

In 2012 Harrington studied the factorization of trinomials of the
form 2" + cz"!' + d € Z[z]. As an application of these results on
trinomials, he proves factorization properties of polynomials of the
form 2" + ¢(z" ' + ... + 2 + 1) € Z[z]. In this presentation, re-
sults regarding the factorization and roots of polynomials of the form
"+ (" + ...+ 2+ 1) € Z[z] are introduced. Analogously to
Harrington, quadrinomials of the form 2" 42" 4+ 2™~ & ¢ associated
to our polynomials are conisdered.
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Peter G. Anderson, RIT, Rochester, NY, USA
More Remarkable Continued Functions

Some sequences of linear functions of the form 7}, = % which sat-
isfies a Fibonacci-like composition rule, T, 1 = T,,07T,,_1 has a sequence
of fixed points f,, = b,/(c, — 1) involving a remarkable continued frac-
tion [ag, a1, ...] (either finite for any T,, or infinite for lim,, ., T},) satis-
fying a Fibonacci-like multiplication rule, a,,+1 = aynam_1, for m > 1.

For every pair of positive integers, ag, a;, there is a pair of functions,
Ty, Ty, giving the sequence T,,, as above, with fixed points involving the

continued fraction as described above.

Christian Ballot, University of Caen, Caen, France
Variations on Catalan Lucasnomials

If U = (Un)n>o is a sequence of nonzero integers, then one may
consider the generalized binomial coefficients, (TZ)U, with respect to U.
They are defined for m > n > 0 as follows

m . UmUm—l e Um—n—H
n)y UdlUps...Up

ifm>n>1and as 1, if n = 0.

We will solely concentrate on the case when U = U(P, Q) is a non-
degenerate fundamental Lucas sequence, i.e., a second-order linear re-
current sequence with Uy = 0, Uy = 1 and U, # 0 for n > 2 which
satisfies

Uyio = PU,1 — QU,, for all n >0,

where P and () are nonzero integers. Those generalized binomial co-
efficients are referred to as Lucasnomials. Thus, the sequence I =
(In)n>0 of natural numbers is the particular fundamental Lucas se-
quence U(2,1) which yields the ordinary binomial coefficients.

We know n + 1 divides (2:) for all n > 1. If k£ is an integer not 1,
then there are infinitely many n > 1 for which n + k& does not divide
(2:) As it happens this Catalan phenomenon remains true, or nearly
so, for Lucasnomials. That is, for ged(P, Q) = 1,

1 <2n>
Un+k nJ)uy
is an integer for alln > 1iff k =1, or k =2 and U = U(1,2). We will
review further extensions of these results, in particular with respect

to Lucasnomial Fuss-Catalan numbers and go in detail over theorems
surrounding this phenomenon. Open problems will be outlined.
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Barry Balof, Whitman College, Walla Walla, WA, USA
Selfish Sets, Posets, Tilings and Bijections

A subset of the integers {1,2,...,n} is selfish if it contains its own
cardinality as an element. Those sets for which the minimal element
is the cardinality (referred to by Grimaldi as extraordinary sets) are
enumerated by the Fibonacci Numbers. In a 2013 paper, Grimaldi
and Rickert introduced a partial order on these extraordinary sets. In
this talk, we will establish natural bijections between the subsets and
domino-square tilings to give a new interpretation to some combinato-
rial identities.

Bob Bastasz, Missoula, MT, USA
Digital Loop Systems

A digital loop system S[m, 1] is a set of periodic sequences based on
a [-order linear recurrence in a finite field F,,,. Each sequence, called a
loop, is expressed as a Lyndon word consisting of the digits in its least
period and can be uniquely specified by a minimal element, which is a
[-tuple pre-necklace. The periods of all distinct loops in a system sum
to m!. For example, the Fibonacci sequence (mod 10), with a period
of 60, is one of six digital loops contained the system S[10, 2], whose
periods sum to 102

A basic property of a digital loop system is the number of distinct
loop periods, c. Of particular interest are systems in which m is a prime
and c is two or three. If S[m,[] has ¢=2, it is proposed that S[m’,I]
has ¢ = i+ 1 where 7 is a positive integer. Cases where the same period
can be found for loops in S[m, ] and S[m?, 1] will be discussed.

Arthur T. Benjamin, Harvey Mudd College, Claremont, CA, USA
Some Bingo Paradoxes

In the game of Bingo, when many cards are in play, it is much more
probable that the winning card is horizontal than vertical. We will
explore this and other paradoxes. Fibonacci numbers and g-binomial
coefficients make a brief appearance.

Bruce M. Boman, University of Delaware, Newark, DE, USA
Geometric Branching Patterns Based on the p-Fibonacci Numbers: Self-
similarity Across Different Degrees of Branching and Multiple Dimen-
St0ns

Branching patterns occur throughout nature and are often described
by the Fibonacci numbers. While the regularity of these branching
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patterns in biology can be described by the Fibonacci numbers, the
branches (leaves, petals, offshoots, limbs, etc) are often variegated (size,
color, shape, etc). To begin to understand how these patterns arise,
we considered different branching patterns based on the p-Fibonacci
numbers. In our model, different branch patterns were created based
on a specific number of decreasing-sized branches that arise from a
main branch (termed the degree of branching). It was assumed that
the ratio between the sizes of pairs of consecutive branches (ordered by
size) equals the ratio of the largest branch size to the sum of the largest
and smallest branch sizes. Generation of these branching structures
illustrates that pattern self-similarities occur across different degrees of
branching and multiple dimensions. Conclusion: studying geometric
branching patterns based on the p-Fibonacci numbers begins to show
how the regularity in branching patterns might occur in biology.
(Joint work with Gilberto Schleiniger).

Scott Cameron, Dalhousie University, Halifax, NS, Canada
A Linear Algebra Problem Related to Legendre Polynomials

I introduce a problem which piqued my interest, namely a question
asked in the context of simple linear algebra, and then generalize this
problem to investigate further properties. This leads to a study of
families of polynomial coefficients for kernels of shifted Legendre poly-
nomials, and the properties which they have. It turns out that there is
a general formula for the generating function of each of these families.

Marc Chamberland, Grinnell College, Grinnell, IA, USA

Arctan Formulas and 7

There are many interesting formulas connected to the arctan func-
tion. For centuries, Machin-like formulas, such as

T_ 4 arctan 1 — 4 arctan L
4 5 239

were the main technique used for calculating Pi. Starting with a geo-
metric motivation, we build several new arctan formulas, for example,

a+b+c a+b+c
m = arctan | ay/ ——— | + arctan | b/ ——
abe abe

( a+b+ c)
+ arctan | ¢4/ ———
abe

when a, b, ¢ > 0. (Joint work with Eugene Herman.)
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Meliza Contreras Gonzalez, Universidad Auténoma de Puebla,
Puebla, Mexico
Counting Independent Sets on Bipolygonal Graphs

We consider the sequence S5y = Fy - Fi—s for k > 0,1 < s < k —
1, introduced in [1], that is formed by the product of two Fibonacci
numbers with complementary indexes. The values of this sequence
allow us to compute the number of independent sets on bipolygonal
graphs, which are graphs formed by two polygons C; and Cj joined by
an edge e = {z,y}, with z € V(C;) and y € V(C;). We denote this
class of graphs as H; ;. In particualr, when the polygons C; and C;
are hexagons, then H;; is the primitive graph used to form chains of
polyphenylene compounds [2].

We apply the edge division rule to decompose H;; and to use the
values in the sequence (3, for computing the number of independent
sets of H; ;, denoted as i(H, ;). In fact, i(H,;;) = Fiy1 - Fjo1 + Fiyq -
F,_1+F,_;-Fj;;. Fixing k > 6, and k = ¢+ 7, we consider the different
subgraphs formed by the variations: 3 <,5 < (k —3). We analyze all
possible size combinations for C; and Cj, fixing ¢ + j as a constant k.

In addition, the way to compute H; ; allow us to determine extremal
topologies for i(H; ;). The extremal values are identified when the
greatest variation (entropy) between the sizes of the polygons C; and
C} is achieved. The minimum value corresponds to |C;| —|C;| = 6, and
the maximum value is given when |C;| — |C;| = 4.

(Joint work with Guillermo De Ita Luna and Pedro Bello Lépez.)
References
[1] G. De Tta, J. R. Marcial, J. A. Hernédndez, R. M. Valdovino, Ex-
tending Extremal Polygonal Arrays for the Merrifield-Simmons Index,
Lecture Notes in Computer Science, 10267 (2017), 22-31.

2] Dogli¢ T., Litz M. S., Matchings and Independent Sets in Polypheny-
lene Chains, MATCH Commun. Math. Comput. Chem., 67 (2012),
313-330.

Curtis Cooper, Univ. of Central Missouri, Warrensburg, MO, USA
Some Generalized High Order Fibonacci Identities

The Gelin-Ceséro identity states that for integers n > 2,
Fn—2Fn—1Fn+1Fn+2 - Fﬁ = _1;

where F), denotes the nth Fibonacci number. Horadam generalized the
Fibonacci sequence by defining the sequence W,, where Wy = a, Wy =
b, and W,, = pW,,_1 — qW,,_5 for n > 2 and a, b, p and ¢ are integers
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and ¢ # 0. Using this sequence, Melham and Shannon generalized the
Gelin-Cesaro identity by proving that for integers n > 2,

W oW a W1 Wogo — Wy = eq" (0> + )Wy, + €*¢*"%p?,

where e = pab — ga® — b*>. We will discover and prove some similar
generalized high order Fibonacci identities.

Steven Edwards, Kennesaw State University, Marietta, GA, USA
Generalizations of Delannoy Numbers

The Delannoy numbers D(m,n) count the number of lattice paths
from (0,0) to (m,n), where the allowable steps are up, right, and
diagonal. The Delannoyi numbers satisfy the recursion D(m,n) =
D(m,n — 1) + D(m — 1,n) + D(m — 1,n — 1). By restricting the
number of diagonal steps allowed, we construct collections of gener-
alized Delannoy numbers. The generalized Delannoy numbers satisfy
the same recursion as the Delannoy numbers. There are many relations
relating these numbers, and these relations, in turn, produce binomial
identities which generalize known identities. Some of these identities
provide insights into intrinsic properties of Pascal’s triangle.

(Joint work with William Griffiths.)

Larry Ericksen, Millville, NJ, USA
Properties of Polynomials that Encode Representations

We present hyperbinary properties of two-variable Stern polynomi-
als, with extension to hyper b-ary representations of integers. Contin-
ued fractions are also constructed from polynomial analogues of Lucas

sequences.
(Joint work with Karl Dilcher.)

Dale Gerdemann
Images from Zeckendorf and Other Numerical Representations

Images, many of them fractal, can be generated from generalizations
of numerical representations, primarily Golden Ratio Base, Zeckendorf
and a variant of Zeckendorf which uses negatively indexed Fibonacci
numbers (due to Martin Bunder). Bit sequences can be extracted from
these representations that can be used to guide a walk in the plane,
using color coding to represent the number of times each lattice point is
encountered. Several algorithms can be used to convert the binary bit-
pattern sequence into directional information, but all rely on the use of
a division test using a prespecified divisor. The test may be on a count
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of the total number of steps already taken in the walk or it may be on a
more restricted count of just the steps corresponding to a 1-bit in the bit
sequence. The idea is extended to Lucas numbers of the first kind: Uy =
0, U, =1,U, =sU,_1 +tU,_o. A variety of examples for various s, ¢
and divisor can be seen at https://bit.1ly/2KcKSL7. Fractal images
exhibit symmetry at specific points in their construction. Based on
experimentation, these points may correspond to Lucas numbers of
the first or second kind. Possibly path lengths required to construct an
image of some sort could be used to provide a counting interpretation
of other combinatorial integer sequences. To test this idea, images are
constructed for OEIS A181926 (diagonal sums of Fibonomial triangle).

Heiko Harborth, TU Braunschweig, Braunschweig, Germany
A Conjecture for Pascal’s Triangle

For a prime number p consider Pascal’s triangle reduced modulo
p. Let a;(n) count the number of residues ¢ in row n. If the linear
combinations

coap(n) + crar(n) + ... + cp—1ap—1(n) =0

are fulfilled then it is conjectured by H.-D. Gronau and M. Krueppel
that ¢; = 0 for 0 < i < p — 1. Partial results are presented.

Russell Jay Hendel, Towson University, Towson, MD, USA
Proof and Formulation of a Tagiuri-Generating-Method Conjecture

The Tagiuri Generating Method (TGM) generates one-parameter,
infinite, families, of Fibonacci identities. To describe, I(q), the g-th
member of a family of identities, we need functions s,(q), s,(q), s(q),
and m(q). Let P = H;n:((ll) Frya, with the a;, 1 < j < m(q), parameters.
TGM starts with an identity of the form (s,(q) — s.(q))P = s,(q)P —
$n(q)P. TGM then requires replacement of one product F, i, Friq, in
each of the s(¢) = s,(¢) + sn(¢) summands on the right-hand side of
the start identity with the corresponding right-hand side of the ba-
sic Tagirui identity Fta, Frta, = FnFntap+a + (—1)"Fy, Fy,. Since the
start and Tagiuri identities are true, I(q) is also true. In practice,
we map {a;,1 < j < m(q)} to a subset of the integers symmet-
ric around 0 (and excluding 0 if m(q) is even). Particular examples
of TGM families have been explored in FQ articles and conferences
(Fibonacci (CAEN), West Coast Number Theory, MASON II). Main
results are typically expressed as statements about the I(q)-index his-
tograms, H, = {(z,c,(x)) : * € Z}, where for each integer z, c,(z)
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counts the number of occurrences of F,,, in I(g). In this talk, we
prove, Under mild restrictions, #{c,(z) : (z,c,(z)) € Hy,x,q € Z,q >
1.} < ¢, that is, for each ¢ > 1, the number (cardinality, #) of dis-
tinct indez-counts in 1(q) is bounded above by a very small computable
constant, ¢, independent of q. The theorem is proven by presenting
a single proof unifying all previous examples. The presentation closes
by reviewing the history of Fibonacci-Lucas identities and showing a
very recent trend to studying families of identities instead of individual
identities or proof methods.

Burghard Herrmann, Koln, Germany
How Integer Sequences Find Their Way Into Areas Outside “Pure
Mathematics”

Integers are considered on the surface of a cylinder as in the model
of the pineapple in Coxeter [Introduction to Geometry, Chapter 11.5
Phyllotaxis (literally ”leaf arrangement”)]. The fractional part n® de-
termines the angular position of the nth leaf measured in turn, where ®
denotes the golden ratio. A positive integer n is called a ”front number”
if n® < 1/4 or n® > 3/4, otherwise, n is called a ”back number”.

The sequence of front numbers (http://oeis.org/A295085) is related
with some sequences of Kimberling: the sequence of front numbers is
the intertwining of A190249 and A190251 and the sequence of back
numbers corresponds to A190250.

Burghard Herrmann, Koln, Germany
Visibility in a Pure Model of Golden Spiral Phyllotaxis

As a contribution to our understanding of lattices the talk sum-
marizes the paper “Visibility in a pure model of golden spiral phyl-
lotaxis”. It is published in the current issue of MATHEMATICAL BIO-
SCIENCES (Share Link: https://authors.elsevier.com/a/1X9t75pvHBD-
A).

Orli Herscovici, University of Haifa, Haifa, Israel
New Degenerated Bernoulli and Euler Polynomials Arising From Non-
Classical Umbral Calculus

We introduce new generalizations of the Bernoulli and Euler polyno-
mials based on the degenerate exponential function and concepts of the
Umbral Calculus associated with it. We present generalizations of some
familiar identities and connection between these kinds of Bernoulli and
Euler polynomials which we have established in our preliminary work.
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(Joint work with Toufik Mansour.)

Lin Jiu, Dalhousie University, Halifax, NS, Canada
Bessel Random Walks and Identities for Higher-Order Bernoulli and
Euler Polynomials

We consider the study of random walks as a technique to obtain
non-elementary identities for higher-order Euler and Bernoulli poly-
nomials. In the case of a one-dimensional linear reflected Brown-
ian motion, considering the successive hitting times of uniformly dis-
tributed levels in [0, 1] yields non-trivial expressions for higher-order
Euler polynomials. These results are also interpreted as a stochastic
sum decomposition due to Klebanov. Analogous results in the case of
a 3-dimensional Bessel process yield non-elementary expressions about
higher-order Bernoulli polynomials.

(Joint work with Christophe Vignat.)

Bir Kafle, Purdue University Northwest, Westville/Hammond, IN,
USA
Pell Numbers of the Form 2% + 3° 4 5¢

The Pell sequence (P,),>0, Pell-Lucas sequence (Q,,)n>0 and the as-
sociated Pell sequence (g,)n>0 are defined by the same binary recur-
rences

Pn+1 = 2Pn + Pn—la Qn—H = QQn + Qn—l and Gn+1 = 2Qn + Gn-1,

with the initial terms Py =0, P, =1, Qo= Q1 =2 and ¢g = ¢; = 1,
respectively. The problem of finding Fibonacci, Lucas, or Pell numbers
of a particular form has a very rich history. In this talk, we look
into P,, @, and ¢, as the sum of the three perfect powers of some
prescribed distinct bases. In particular, we determine all the solutions
of the Diophantine equations

P,=243"4+5 Q,=2"+3"+5 and ¢,=2*+3"+5°
in positive integers (n,a,b,c), with some restrictions. Our methods

involve the linear forms in logarithms of algebraic numbers.
(Joint work with F. Luca and A. Togbé.)
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Clark Kimberling, University of Evansville, Evansville, IN, USA
Linear Complementary Equations and Systems

After a brief history of complementary equations, a definition is given
for linear complementary equation, with particular attention to exam-
ples typified by a, = a,_1 + an_2 + b,, where (b,) is the complement
of (a,) in the set N of positive integers, and a,/a,_1 — (1 + v/5)/2.
Also introduced are systems of equations whose solutions are sequences
that partition N. An example is the system defined recursively by a,, =
least new k, b, = least new k, and ¢, = a, + b,, where “least new k",
also known as “mex”, is the least integer in N not yet placed. The
sequence (c,) in this example is the anti-Fibonacci sequence, A075326
in the Online Encyclopedia of Integer Sequences.

(Joint work with Peter J. C. Moses.)

Karyn McLellan, Mount Saint Vincent University, Halifax, NS, Canada
A Problem on Generating Sets Containing Fibonacci Numbers

At the Sixteenth International Conference on Fibonacci Numbers
and Their Applications the following problem was posed:

Let S be the set generated by these rules: Let 1 € S and if x € S,
then 2x € S and 1 — x € S, so that S grows in generations: G; =
{1}, Gy ={0,2},G3 = {—1,4},. ..

Prove or disprove that each generation contains at least one Fibonacci
number or its negative.

We will show that every integer k£ can be found in some G; and
will disprove the above statement by finding an expression for the gen-
eration index ¢ for any given k. We will use a variety of recurrence
sequences including the dragon curve sequence, properties of binary
numbers, and a computer calculation to find numerous counterexam-
ples.

(Joint work with Danielle Cox)

Steven J. Miller, Williams College, Williamstown, MA, USA
From Monovariants to Zeckendorf Decompositions and Games

Zeckendorf’s Theorem states that every positive integer has a unique
decomposition as a sum of non-adjacent Fibonacci numbers; this has
been generalized to many other recurrences. We show by looking at ap-
propriate monovariants that these decompositions have the fewest sum-
mands possible. We use this perspective to analyze a new two-player
game on Fibonacci decompositions, and provide a non-constructive
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proof that Player Two always has a winning strategy. As time per-
mits we will discuss generalizations and open problems.

Antara Mukherjee, The Citadel, Charleston, SC, USA
The Geometric Interpretation of Some Fibonacci Identities in the Hosoya
Triangle

The Hosoya triangle is a triangular array (like the Pascal triangle)
where the entries are products of Fibonacci numbers. The symmetry
present in the Hosoya triangle helps us explore several patterns and find
new identities. In this talk we give a geometric interpretation -using
the Hosoya triangle- of several Fibonacci identities that are well known
algebraically. For example, we discuss geometric proofs of Cassini,
Catalan, and Johnson identities. We also extend some properties from
Pascal triangle to the Hosoya triangle. For instance, we generalize the
hockey stick property, the T-stick identities — that were originally given
in terms of binomial coefficients — to identities for Fibonacci numbers.

(Joint work with R. Flérez and R. Higuita.)

Kouichi Nakagawa, Saitama University, Saitama, Japan
Ezact Periodicity of Generalized Fibonacci and Tribonacci Sequence

Let {G,(a,b)} be the generalized Fibonacci sequence, where Gy = a,
Gy =b,and G, = G,,_1 + Gp,_o, n > 2, and let {T},(a,b,c)} be the
generalized Tribonacci sequence, where Ty = a, T} = b, 15 = cand T}, =
T 1+Tho+T,_3,n>3. (Thus G,(0, 1) is the nth Fibonacci number,
G,(2,1) is the nth Lucas number, 7,,(0,0,1) is the nth Tribonacci
number (or nth Fibonacci 3-step number) and T,,(3,1,3) is the nth
Lucas 3-step number).

D. D. Wall showed that the generalized Fibonacci sequence is simply
periodic when taken modulo m. (For example, in the case of the original
Fibonacci sequence the length of period (mod 10) is 60, and (mod
100) it is 300, and so on.) C. C. Yalavigi showed that the generalized
Tribonacci sequence mod m is simply periodic as well. (For example, in
the case of the original Tribonacci sequence the length of period (mod
10) is 124 and (mod 100) is 1240, and so on.) However, the simply
periodic sequences do not necessarily have the smallest period. (For
example, the generalized Tribonacci sequences (mod 10), (a,b,c) =
(3,1,3), (1,7,9),... have a period of 31, (a,b,c) = (0,1,0), (3,2,1), ...
have a period of 62 and (a,b,c) = (0,0,1), (2,3,5),... have a period
of 124.) Hence we compute the periods (mod 10%) up to d = 4 for
all generalized Fibonacci sequences and up to d = 3 for all Tribonacci
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sequences by experimental mathematics and analyze the relationships
between periodic groups observed.
(Joint work with Rurika Sudo.)

Sam Northshield, SUNY-Plattsburgh, Plattsburgh, NY, USA
Reé3 counting the Rationals

In 1999, Neil Calkin and Herbert Wilf wrote their charming “Re-
counting the rationals” which gave an explicit bijection between the
positive integers and the positive rationals: namely, n — a,.1/a,
where a,, is defined by a; = 1,a9, = a,, and ag,11 = api1 + ay.
Alternatively, a,; is the number of hyperbinary representations of n
or, in still another way,

Upi1 = ap +ay_1 —2(a,_1  mod ay,) .

Expressing this in another way, for f(z) := 1+1/2—2{1/x} where {z}

denotes the fractional part of z, the sequence 1, f(1), f(f(1)), F(f(f(1))),...

is a list of all of the positive rationals.

We will discuss the facts that iterates of 24 2/x —4{1/x} starting at
2 also cover the positive rationals as do the iterates of 3+3/x —6{1/x}
starting at 3. That is, the iterates of ¢f(x), starting at ¢, cover the
positive rationals when ¢ = 1, 2, 3. Surprisingly, ¢ = 1,2, 3 are the only
numbers for which this is true.

I'll sketch some of the proofs; they involve, among other things,
“negative” continued fractions, Chebyshev polynomials, Euler’s totient
function, arrangements of circles, and the generalized Stern sequences

Tnt1 = \/E " Ty Tp—1 — 2 (xn—l mod (\/E : xn)) .

I will also discuss some remarkable properties of these latter sequences.

Prapanpong Pongsriiam, Silpakorn University, Faculty of Science,
Nakhon Pathom, Thailand

Fibonacci and Lucas Numbers Which Have Exactly Three Prime Fac-
tors and Some Unique Properties of Fig and Lig

Let F,, and L, be the nth Fibonacci and Lucas numbers, respec-
tively. Let w(n) be the number of prime factors of n, d(n) the number
of positive divisors of n, A(n) the least positive reduced residue sys-
tem modulo n, and ¢(n) the length of longest arithmetic progressions
contained in A(n). In the occasion of attending the 18th Fibonacci
Conference, we will show some results concerning w(F,), w(Ly,), d(F,),
and d(L,) which reveal a unique property of Fig and Liz. We also
find the solutions to the equation ¢(n) = 18 and show a connection
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between them and Figz. Some examples and numerical data will also
be presented.

J. C. Saunders, University of Waterloo, Waterloo ON, Canada
On (a,b) Pairs in Random Fibonacci Sequences

We examine the random Fibonacci tree, which is an infinite binary
tree with non-negative integers at each node. The root consists of the
number 1 with a single child, also the number 1. We define the tree
recursively in the following way: if x is the parent of y, then y has two
children, namely |x — y| and = 4+ y. This tree was studied by Benoit
Rittaud who proved that any pair of integers a,b that are coprime
occur as a parent-child pair infinitely often. We extend his results
by determining the probability that a random infinite walk in this tree
contains exactly one pair (1, 1), that being at the root of the tree. Also,
we give tight upper and lowerbounds on the number of occurrences of
any specific coprime pair (a,b) at any given fixed depth in the tree.

(Joint work with Kevin Hare.)

Susanna Spektor, Brock University, St. Catharines, ON, Canada
On a Y1-Norm Estimate of Sums of Dependent Random Variables Us-
ing Stmple Random Walks on Graphs

We obtained a 17 estimate for the sum of Rademacher random vari-
ables under condition that they are dependent.

Paul K. Stockmeyer, The College of William & Mary, Williamsburg,
VA, USA

Discovering Fibonacci Numbers, Fibonacci Words, and a Fibonacci
Fractal in the Tower of Hanoi

The Tower of Hanoi puzzle, with three pegs and n graduated discs,
was invented by Edouard Lucas in 1883, writing under the name of
Professor N. Claus. A simple question about relative distances be-
tween various regular states of this puzzle has lead to the discovery of
a new occurrence of Fibonacci numbers, a new illustration of the finite

Fibonacci words, and a fractal of Hausdorff dimension log,(¢), where

¢ is the golden ratio %5

(joint work with Andreas M. Hinz, LMU Miinchen, Germany.)
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Elif Tan, Ankara University, Ankara, Turkey
A Note on Conditional Divisibility Sequences

A sequence of rational integers {a,} is said to be a divisibility se-
quence (DS) if m | n whenever a,, | a, and it is said to be a strong
divisibility sequence (SDS) if ged (am, an) = Gged(m,n)- These sequences
are of particular interest because of their remarkable factorization prop-
erties and usage in applications, such as factorization problem, primal-
ity testing, etc. The best known examples are Fibonacci sequence,
Lucas sequence, Lehmer sequence, Vandermonde sequences, resultant
sequences and their divisors, elliptic divisibility sequences, etc.

In this talk, we consider the conditional recurrence sequence {g,} is
one in which the recurrence satisfied by ¢, depends on the residue of
n modulo some integer r > 2. If the conditional sequence {g,} is also
a divisibility or strong divisibility sequence, we call it as a conditional
divisibility or conditional strong divisibility sequence. We investigate
and find some families of the conditional divisibility and the conditional
strong divisibility sequences.

(Joint work with Murat Sahin.)

Thotsaporn ‘Aek’ Thanatipanonda, Mahidol University Interna-
tional College, Nakornphathom, Thailand
Statistics of Domino Tilings on a Rectangular Board

It is well known the Fibonacci sequence, F},, is the number of ways to
cover a 2-by-(n — 1) board using only the horizontal(H) or vertical(1)
2-by-1 dominos. It is natural to generalize this idea to a rectangular
m-by-n board where m is a fixed number and n is symbolic. We can try
harder and compute the mixed moment S[V¢H?] for fixed non-negative
integers a,b but general m,n. After all these moments are computed,
we will gain an information of the distribution of these statistics as
well. Note that the Fibonacci numbers and generalization are the cases
where a = b = 0 i.e. the zero moment.

Christophe Vignat, Université d’Orsay, Orsay, France
Finite Generating Functions for the Sum-of-Digits Sequence

I will show some results about finite generating functions associ-
ated with the sequence {sy(n)}, where s,(n) is the sum of the digits
of the representation in base b of the integer n. This sequence has
been studied, for example, by J.-P. Allouche and J. Shallit — see their
book “Automatic Sequences, Theory, Applications, Generalizations”.
Thanks to a general identity that relates the sequence {s;(n)} to the
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finite difference operator, we obtain, for example, an explicit expression
for a Hurwitz-type generating function related to this sequence. Our
generalizations also include links to some Lambert series and to infinite
products related to the sequence s;(n).

(Joint work with T. Wakhare.)

Tanay Wakhare, University of Maryland, College Park, MD, USA
Structural Identities for Multiple Zeta Values

medskip We revisit some results by Borwein et al. about Multiple
Zeta Values and show that they can be extended to an arbitrary, pos-
sibly finite, sequence of numbers. Specializing these sequences as the
zeros of special functions gives us some new results about Bessel and
Airy Multiple Zeta values. In the Bessel case, specializing the argument
to v = 1/2 allows us to recover the classical results by Borwein.

(Joint work with C. Vignat.)

William Webb, Washington State University, Pullman, WA, USA
What Makes A “Nice” Identity?

There are probably thousands of known identities involving recur-
rence sequences. We will suggest one way to judge whether an identity
is particularly simple, or nice, or maybe unexpected. We begin with a
reminder that often the easiest way to prove many of the basic prop-
erties of recurrence sequences, including proving identities, is viewing
recurrences as elements of vector spaces. By looking at the dimensions
of these vector spaces we can show why some identities are rather ordi-
nary and others much more unexpected. We end by showing how these
techniques can be used to prove a conjecture by R. S. Melham.

William Webb, Washington State University, Pullman, WA, USA
Proving Identities in Arbitrary Fields

Most of the known identities involve the Fibonacci numbers or pos-
sibly other recurrence sequences in the ring of integers. However, the
natural place to study them is in the complex field, since we often
need to express a recurrence as a generalized power sum in terms of
powers of the roots of the associated characteristic polynomial. Since
we need roots of polynomials it is easier to work over an algebraically
closed field. It is often the case that an identity (or other result) is first
proved for the Fibonacci numbers, them maybe for the Lucas numbers,
Pell numbers, other second order integer sequences, Fibonacci polyno-
mials etc. However, it is possible to prove all of these cases, as well
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as for recurrence sequences in much more general algebraically closed
fields, all at once. Since the results are much more general, the proofs
may be more tedious. Many proof techniques can be used, but some,
such combinatorial proofs which usually involve quantities counted by
integers, may not be applicable. We give several examples of such
general identities, such as:

If a second order recurrence sequence satisfies the recurrence u,, o =
at,+1 + bu,, then

~ bu, + upiq1 — 1
E Uj = .
’ a+b—1
Jj=0

This is of course not a new identity, but we note that it is true regardless

of whether the parameters a and b and hence the recurrence sequence

itself are integers, polynomials, power series, p-adic numbers etc.
(Joint work with Nathan Hamlin.)

Paul Young, College of Charleston, Charleston, SC, USA
Global Series for Zeta Functions

We give two general classes of everywhere-convergent series for Barnes
generalization of Hurwitz zeta functions, which involve Bernoulli poly-
nomials of the second kind and weighted Stirling numbers. These series
are also valid p-adically, and yield several identities and series for zeta
values and Stieltjes constants which are valid in both real and p-adic
senses.

Paul Young, College of Charleston, Charleston, SC, USA
The Power of 2 Diwiding a Generalized Fibonacci Number

Let T,, denote the generalized Fibonacci number of order k defined
by the recurrence T,, = T, 1 + T, o + --- + T,,_ for n > k, with ini-
tial conditions Ty = 0 and T; = 1 for 1 < ¢ < k. Motivated by some
recent, conjectures of Lengyel and Marques, we establish the 2-adic val-
uation of T,, settling one conjecture affirmatively and one negatively.
We discuss the computational issues that arise and applications to Dio-
phantine equations involving (77,).

Osman Yirekli, Ithaca College, Ithaca, NY, USA
A Pascal-Like Triangle From a Special Function

This presentation is devoted to a new Pascal-like triangle appear-
ing unexpectedl y from a sequence of polynomials obtained from the
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derivatives of the special function Dawson’s integral which is defined
by the integral

daw(z) = / exp(y? — 22) dy.
0

We investigate the properties of the Pascal-like triangle and its appli-
cations. In addition, we discuss a generalization for the triangle and
Dawson’s integral. It is also possible to obtain new Fibonacci-like se-
quences from the triangle and its generalizations.
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The Paul Bruckman Prizes

The Fibonacci Association is pleased to announce the establishment
of the Paul Bruckman Prize program pursuant to which prizes of $1000
will be awarded for papers which develop a new approach or expand
results in the area of generalized Fibonacci numbers and related areas of
mathematics. Guidelines for topics which would qualify for submission
can be obtained by email from: fibonacciassociation@gmail.com.

Two prizes will be awarded in each even-numbered year commencing
with 2016. One prize will be awarded to a paper appearing in the last
two years in the Fibonacci Quarterly. The second prize will be awarded
to a paper presented at the Fibonacci Association biannual conference
in the relevant year.

The prize is named in honor of Paul Bruckman who had a long and
distinguished association with Fibonacci numbers as described in more
detail in A Tribute to Paul S. Bruckman published in The Fibonacci
Quarterly, 49.3 (2011), 281. The program is funded by a grant from
George A. Hisert of Berkeley, California. George started his career as
a mathematician, but for various reasons he then chose to become a
lawyer. Upon his retirement from practicing law, he returned to math-
ematics with a particular interest in Fibonacci numbers. That interest
was furthered through several interactions with Paul Bruckman. Three
papers, authored by George, were published in the JP Journal of Al-
gebra, Number Theory and Applications, Volumes 24, 28, and 31.

The two prizes will be awarded at the Fighteenth International Con-
ference on Fibonacci Numbers and their Applications scheduled to be
held in Halifax, Nova Scotia, Canada, in the summer of 2018. Pa-
pers will be judged by a panel chosen from the Fibonacci Association’s
Board of Directors or its Editorial Board. In the event that there is no
paper submitted which the panel considers as qualifying for a prize, no
prize will be given in that category for that year.

The aim of the prize is to recognize researchers who are early in their
careers. Special consideration will be given to papers where at least
one of the co-authors is 40 or younger. Age will be determined as of
the date a paper is submitted.

The winners of the 2018 George Bruckman Prizes will be announced
during the conference dinner on Thursday, July 5, 2018.
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The Fibonacci Portrait

No true portrait of Leonardo of Pisa (Fibonacci) seems to be known,
but probably the most impressive one of the very few imagined portraits
of Fibonacci is the photograph that was chosen for the cover of this
program and also for the commemorative mugs. This photograph was
taken by the late Frank Johnson (1934-2016), a regular attendee of
the International Fibonacci Conferences, well-known in the Fibonacci
community, and a friend to many.

This portrait has been reproduced with the kind permission of Frank’s
widow, Marjorie Bicknell-Johnson. Leading up to the current confer-
ence, Marjorie wrote the following about the history of this photograph:

This portrait was taken by Frank Johnson in 1978 as a gift for Dr.
Verner E. Hoggatt, Jr., co-founder of the Fibonacci Quarterly. The
statue, larger than life, stood on a pedestal, and its head was at least
fifteen feet above the ground. Frank climbed onto rickety scaffolding and
leaned out to capture this picture; I was afraid he’d fall and break his
neck. Frank accompanied me at all but two Fibonacci Conferences.

Meanwhile the statue has been cleaned up and has been moved to a
sheltered location. It will therefore have lost its greenish tinge which,
to me, makes this portrait so appealing. More about the statue, its
history, and its current location can be found in Keith Devlin’s sec-
ond book about Fibonacci, namely “Finding Fibonacci: The Quest
to Rediscover the Forgotten Mathematical Genius Who Changed the
World”, Princeton University Press, 2017.
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Choices for Lunch

Monday, July 2:

This being a holiday, almost everything on campus will be closed,
with the exception of the Howe Dining Hall; see below. Since Mon-
day’s lunch break is 2 hours long (as opposed to 1 1/2 hours Tuesday—
Friday), some of the closer off-campus places may also be an option;
see the following page.

Tuesday—Friday:
We can recommend the following close-by lunch places on campus:

1. The Pub in the University Club, downstairs (see the campus map
— it’s across the “Studley Quad”).

Very popular among faculty and staff (including your organizers).
Fast service, decent food, and an “overflow room” if it gets too busy.
A variety of sandwich choices as well as soups and hot dishes, including
vegetarian. Typically $10-$15.

2. The Dining Room in the University Club, main floor.

Same food choices as in the Pub, but in a more “genteel” dining
room setting. It will take more time, but the 90 minute breaks will be
sufficient.

3. The Howe Dining Hall, located in the Howe Hall Residence (see
campus map — the purple “2” on Coburg Road.)

Open for lunch, 11 am — 2 pm. $10 + tax. One of the main dining
halls to serve students in residence, but also off-campus students, as
well as visitors during the Summer months. Other meals served there

daily: Breakfast: 7-10am — $8.50; Dinner: 5-7:30pm — $14.00.

4. Student Union Building; certainly the closest, right across from
the conference venue.

A choice of different fast food places, including the iconic Canadian
“Tim Horton’s”. Lots of space.

5. Coburg Coffee House, just off campus, at the corner of Coburg
Road and Henry Street.

Open 7:00am—7:00pm; some days longer. Very popular among stu-
dents and faculty. Offers simple breakfasts, sandwiches and baked
goods. May get busy at lunch, but the 90 minute breaks will suffice.
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Off-Campus Restaurants

There is a small cluster of restaurants not too far from Campus, near
Robie Street, where Coburg Road changes into Spring Garden Road.
It’s approximately 7 minutes to walk from the conference venue (the
McCain Building).

Efes Turkish Cuisine, 5986 Spring Garden Road
A popular Turkish restaurant, considered quite good.

Mary’s Place Cafe 11, 5982 Spring Garden Road
“Old-school, unfussy cafe offering all-day breakfast and Canadian/Middle
Eastern lunch plates”.

On the same block: A few more fast-food, Chinese and Pizza places.

Mappatura Bistro, 5883 Spring Garden Road
A few minutes further down the street, on the other side. Relatively
new, and we haven’t been there yet. See mappaturabistro.ca.

Downtown and Waterfront Restaurants

Too many and too varied to make particular recommendations. Please
see a tourist guide. However, we can recommend three restaurants to
which we routinely take visitors:

Curry Village, 1569 Dresden Row (in the downtown core)
“Comfortable, long-running nook providing traditional Indian meals,
lunch specials and outdoor seating.” http://www.curryvillage.ca

Cha Baa Thai Restaurant, 1546 Queen Street (downtown)
“Fresh Ingredients and Authentic Taste”. http://chabaathairestaurant.ca

Salty’s Seafood Restaurant, 1877 Upper Water Street

Located in the “Historic Properties”, right on the waterfront. For a
table in the upstairs dining room, which offers a great view of the har-
bour, a reservation is recommended. In addition to traditional seafood,
a variety of non-seafood items are also on the menu. http://www.saltys.ca.
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Books on Display

There will be a small display of books by authors who are past or
current conference participants, and some other relevant books. Most
will be display copies. Please have a look at them and consider ordering
or purchasing some of them.

Arthur Benjamin and Jennifer Quinn:
Proofs that Really Count: The Art of Combinatorial Proof
MAA Press, 2003.

Arthur Benjamin:
The Magic of Math: Solving for x and Figuring Out Why
Basic Books, 2016.

Arthur Benjamin and Michael Shermer:

Secrets of Mental Math: The Mathemagician’s Guide to Lightning Cal-
culation and Amazing Math

Three Rivers Press, 2006.

Marc Chamberland:
Single Digits: In Praise of Small Numbers
Princeton University Press, 2017.

Keith Devlin:

Finding Fibonacci: The Quest to Rediscover the Forgotten Mathemat-
ical Genius Who Changed the World

Princeton University Press, 2017.

Richard Dunlap:
The Golden Ratio and Fibonacci Numbers
World Scientific, 1997.

Michael J. Jacobson, Jr. and Hugh C. Williams:
Solving the Pell Equation
CMS Books in Mathematics, Springer, 2009.

George M. Phillips: Two Millennia of Mathematics. From Archimedes
to Gauss
CMS Books in Mathematics, Springer, 2000.

George M. Phillips: Interpolation and Approximation by Polynomials
CMS Books in Mathematics, Springer, 2003.

Anthony G. Shannon and Jean V. Leyendekkers
The Fibonacci Numbers and Integer Structure
Nova Science Publ., 2018.
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Bookshops in Halifax

There is only one decent place for new books in central Halifax:
Bookmark, 5686 Spring Garden Road

Located across the street from the Lord Nelson Hotel, and very
close to the Public Gardens, this is a small but well-stocked bookshop.
https://bookmarkreads.ca/

Only a few blocks further, at the corner of Spring Garden Road and
Queen Street, you will find a new Halifax landmark, the Public Library.
Well worth a visit for its architecture, contents, and two coffee shops,
one of them on the top floor which, by the way, offers an excellent view.

Second-hand Bookshops

For those who like second-hand and antiquarian books, we can recom-
mend the following shops. Their owners and staff are all knowledgeable
and passionate about books.

Schooner Books, 5378 Inglis Street

A Halifax institution for over 40 years, located in the South End, not
far from the Port of Halifax and also within walking distance of Point
Pleasant Park. Well worth a visit. http://www.schoonerbooks.com

Dust Jacket Books And Treasures, 1505 Barrington St,

A hidden treasure, located in the basement of the “Maritime Centre”
highrise building, right downtown, where Spring Garden Road meets
Barrington Street, very close to St. Mary’s Basilica and the Old Bury-
ing Ground.

The Last Word Bookstore, 2160 Windsor St.

This is the smallest of the second-hand bookstores, but still has
plenty to offer and is worth a visit. It’s only a few minutes by foot
from the Atlantica Hotel.

John W. Doull, Bookseller, 122 Main St., Dartmouth

To visit this amazing bookshop you would need a car, or time and pa-
tience with a fairly long bus ride. Don’t be fooled by the drab exterior
and ugly (though safe) neighbourhood. This shop has a huge selec-
tion of books, and very knowledgeable staff. A book lover’s paradise.
http://www.doullbooks.com
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Second-hand Mathematics Books

Last, but not least, in the Mathematics & Statistics Department
(Chase Building) there is a huge collection of second-hand mathematics
books, with some statistics, computer science, and some other sciences.
This is a fundraising initiative. See

https://www.mathstat.dal.ca/"dilcher/oldbooks.html

and talk with Karl Dilcher if you're interested in any of the books
listed. The books are not publicly accessible, but I'll try to find a time
during the conference to provide access for conference participants.



